A Novel Microfluidic System for Capacitive Detection Via Magnetophoretic Separation of Malaria-Infected Red Blood Cells

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Letters Pub Date : 2024-08-28 DOI:10.1109/LSENS.2024.3451238
Amirmahdi Tavakolidakhrabadi;Théo Domange;Clémentine Naım;Francesca Rodino;Ali Meimandi;Cédric Bessire;Sandro Carrara
{"title":"A Novel Microfluidic System for Capacitive Detection Via Magnetophoretic Separation of Malaria-Infected Red Blood Cells","authors":"Amirmahdi Tavakolidakhrabadi;Théo Domange;Clémentine Naım;Francesca Rodino;Ali Meimandi;Cédric Bessire;Sandro Carrara","doi":"10.1109/LSENS.2024.3451238","DOIUrl":null,"url":null,"abstract":"Malaria continues to pose a significant global health challenge, with substantial impediments arising from the need for more reliable, effective, and economically viable diagnostic tools, particularly for early detection. This research introduces a novel microfluidic device designed for malaria-diagnostics through the detection of hemozoin (Hz), a prevalent biomarker for the disease. Our methodology involves the collection of a minimal blood sample, which is subsequently processed through a microfluidic system. This system exploits the paramagnetic properties of Hz to isolate infected blood cells using magnetophoretic separation. The detection process employs a relative capacitive measurement technique capable of quantifying Hz concentrations ranging from 417 \n<inline-formula><tex-math>$fM$</tex-math></inline-formula>\n to 17 \n<inline-formula><tex-math>$pM$</tex-math></inline-formula>\n, facilitating and enhancing malaria diagnosis. Simulations results confirm the efficacy of our device in providing a rapid, cost-effective, and readily producible diagnostic solution. This research demonstrates the potential of integrating advanced microfluidic technology and sensitive detection systems into a compact, portable unit, offering significant improvements over existing malaria diagnostic tools.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10654540/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Malaria continues to pose a significant global health challenge, with substantial impediments arising from the need for more reliable, effective, and economically viable diagnostic tools, particularly for early detection. This research introduces a novel microfluidic device designed for malaria-diagnostics through the detection of hemozoin (Hz), a prevalent biomarker for the disease. Our methodology involves the collection of a minimal blood sample, which is subsequently processed through a microfluidic system. This system exploits the paramagnetic properties of Hz to isolate infected blood cells using magnetophoretic separation. The detection process employs a relative capacitive measurement technique capable of quantifying Hz concentrations ranging from 417 $fM$ to 17 $pM$ , facilitating and enhancing malaria diagnosis. Simulations results confirm the efficacy of our device in providing a rapid, cost-effective, and readily producible diagnostic solution. This research demonstrates the potential of integrating advanced microfluidic technology and sensitive detection systems into a compact, portable unit, offering significant improvements over existing malaria diagnostic tools.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过磁流体分离疟疾感染红细胞进行电容检测的新型微流体系统
疟疾继续对全球健康构成重大挑战,需要更可靠、有效和经济可行的诊断工具,尤其是用于早期检测的诊断工具,这在很大程度上阻碍了疟疾的治疗。这项研究介绍了一种新型微流控装置,该装置通过检测疟疾的一种常见生物标志物--血色素(Hz)来进行疟疾诊断。我们的方法包括收集最低限度的血液样本,然后通过微流控系统进行处理。该系统利用血凝素的顺磁特性,通过磁泳分离法分离出受感染的血细胞。检测过程采用了一种相对电容测量技术,能够量化从 417 美元到 17 美元的 Hz 浓度,从而促进和加强疟疾诊断。模拟结果证实了我们的设备在提供快速、经济、易于生产的诊断解决方案方面的功效。这项研究表明,将先进的微流控技术和灵敏的检测系统集成到一个小巧便携的装置中,比现有的疟疾诊断工具有很大的改进潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
期刊最新文献
An Efficient and Scalable Internet of Things Framework for Smart Farming Machine Learning-Based Low-Cost Colorimetric Sensor for pH and Free-Chlorine Measurement A Portable and Flexible On-Road Sensing System for Traffic Monitoring Advancing General Sensor Data Synthesis by Integrating LLMs and Domain-Specific Generative Models $\mu$WSense: A Self-Sustainable Microwave-Powered Battery-Less Wireless Sensor Node for Temperature and Humidity Monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1