{"title":"A lightweight transformer with linear self-attention for defect recognition","authors":"Yuwen Zhai, Xinyu Li, Liang Gao, Yiping Gao","doi":"10.1049/ell2.13292","DOIUrl":null,"url":null,"abstract":"<p>Visual defect recognition techniques based on deep learning models are crucial for modern industrial quality inspection. The backbone, serving as the primary feature extraction component of the defect recognition model, has not been thoroughly exploited. High-performance vision transformer (ViT) is less adopted due to high computational complexity and limitations of computational resources and storage hardware in industrial scenarios. This paper presents LSA-Former, a lightweight transformer architectural backbone that integrates the benefits of convolution and ViT. LSA-Former proposes a novel self-attention with linear computational complexity, enabling it to capture local and global semantic features with fewer parameters. LSA-Former is pre-trained on ImageNet-1K and surpasses state-of-the-art methods. LSA-Former is employed as the backbone for various detectors, evaluated specifically on the PCB defect detection task. The proposed method reduces at least 18M parameters and exceeds the baseline by more than 2.2 mAP.</p>","PeriodicalId":11556,"journal":{"name":"Electronics Letters","volume":"60 17","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ell2.13292","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics Letters","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ell2.13292","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Visual defect recognition techniques based on deep learning models are crucial for modern industrial quality inspection. The backbone, serving as the primary feature extraction component of the defect recognition model, has not been thoroughly exploited. High-performance vision transformer (ViT) is less adopted due to high computational complexity and limitations of computational resources and storage hardware in industrial scenarios. This paper presents LSA-Former, a lightweight transformer architectural backbone that integrates the benefits of convolution and ViT. LSA-Former proposes a novel self-attention with linear computational complexity, enabling it to capture local and global semantic features with fewer parameters. LSA-Former is pre-trained on ImageNet-1K and surpasses state-of-the-art methods. LSA-Former is employed as the backbone for various detectors, evaluated specifically on the PCB defect detection task. The proposed method reduces at least 18M parameters and exceeds the baseline by more than 2.2 mAP.
期刊介绍:
Electronics Letters is an internationally renowned peer-reviewed rapid-communication journal that publishes short original research papers every two weeks. Its broad and interdisciplinary scope covers the latest developments in all electronic engineering related fields including communication, biomedical, optical and device technologies. Electronics Letters also provides further insight into some of the latest developments through special features and interviews.
Scope
As a journal at the forefront of its field, Electronics Letters publishes papers covering all themes of electronic and electrical engineering. The major themes of the journal are listed below.
Antennas and Propagation
Biomedical and Bioinspired Technologies, Signal Processing and Applications
Control Engineering
Electromagnetism: Theory, Materials and Devices
Electronic Circuits and Systems
Image, Video and Vision Processing and Applications
Information, Computing and Communications
Instrumentation and Measurement
Microwave Technology
Optical Communications
Photonics and Opto-Electronics
Power Electronics, Energy and Sustainability
Radar, Sonar and Navigation
Semiconductor Technology
Signal Processing
MIMO