{"title":"Parametric analysis of innovative corrugated profile of soil-steel composite bridge","authors":"Nerijus Bareikis","doi":"10.1002/cepa.3072","DOIUrl":null,"url":null,"abstract":"<p>Composite soil-steel corrugated structures are well recognized and widely used for construction of culverts and pedestrian or animal crossings. Moreover, for the past decade corrugated soil-steel structures because of their large span are also recognized and chosen for bridges and tunnels engineering. Record holder composite corrugated structure of 32.40 m span encourages new research in the development of innovations. This paper investigates innovative the deepest corrugation cross-section strengthened with circular hollow section steel pipes influence on plate utilization of large span soil-steel composite bridge. The numerical 2D model of 17.5 m span structure was developed for investigation. Parametric analysis indicated that introduction of circular pipes will reduce corrugated profile steel thickness because of reduction of buckling length of straight region of corrugation. Moreover, 3D numerical analysis of buckling shapes allowed to conclude that local buckling of the deepest corrugation of 500 × 237 mm could be controlled strengthening the plates with circular steel pipes.</p>","PeriodicalId":100223,"journal":{"name":"ce/papers","volume":"7 3-4","pages":"94-99"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ce/papers","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cepa.3072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Composite soil-steel corrugated structures are well recognized and widely used for construction of culverts and pedestrian or animal crossings. Moreover, for the past decade corrugated soil-steel structures because of their large span are also recognized and chosen for bridges and tunnels engineering. Record holder composite corrugated structure of 32.40 m span encourages new research in the development of innovations. This paper investigates innovative the deepest corrugation cross-section strengthened with circular hollow section steel pipes influence on plate utilization of large span soil-steel composite bridge. The numerical 2D model of 17.5 m span structure was developed for investigation. Parametric analysis indicated that introduction of circular pipes will reduce corrugated profile steel thickness because of reduction of buckling length of straight region of corrugation. Moreover, 3D numerical analysis of buckling shapes allowed to conclude that local buckling of the deepest corrugation of 500 × 237 mm could be controlled strengthening the plates with circular steel pipes.