Enrico Condemi, Joanna Kunikowski, Spyridon Schoinas, Philippe Passeraub
{"title":"Pad Printing of Carbon Electrodes with Argon Plasma Activation as a Simple and Low Temperature Manufacturing Process for Antibody-Type Biosensors","authors":"Enrico Condemi, Joanna Kunikowski, Spyridon Schoinas, Philippe Passeraub","doi":"10.1002/adsr.202400015","DOIUrl":null,"url":null,"abstract":"<p>In diagnostic tools, rapid in vitro tests such as COVID-19 antigen or pregnancy tests are gaining significance for identifying various pathologies or health conditions. This shift contributes to a change in the way diagnostic efforts are carried out, emphasizing decentralized approaches that offer valuable services within communities, yielding long-term advantages for the healthcare system. Considering the substantial quantity of these tests manufactured and used annually, a straightforward manufacturing process is proposed for highly sensitive carbon electrodes designed for antibody-type biomarker sensors. This process, utilizing pad printing – an additive, low-temperature, and cost-effective method, coupled with plasma activation – has proven the electrodes capability to measure interferon gamma protein, a tuberculosis biomarker. Using electrochemical impedance spectroscopy, the electrodes display high sensitivity and are capable of measuring concentrations from 10 to 1000 pg mL<sup>−1</sup> in undiluted serum within an hour. The sensor, utilizing solely a monolayer of antibodies, achieves a performance equivalent to that of a commercial standard sandwich ELISA tested in this study.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400015","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsr.202400015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In diagnostic tools, rapid in vitro tests such as COVID-19 antigen or pregnancy tests are gaining significance for identifying various pathologies or health conditions. This shift contributes to a change in the way diagnostic efforts are carried out, emphasizing decentralized approaches that offer valuable services within communities, yielding long-term advantages for the healthcare system. Considering the substantial quantity of these tests manufactured and used annually, a straightforward manufacturing process is proposed for highly sensitive carbon electrodes designed for antibody-type biomarker sensors. This process, utilizing pad printing – an additive, low-temperature, and cost-effective method, coupled with plasma activation – has proven the electrodes capability to measure interferon gamma protein, a tuberculosis biomarker. Using electrochemical impedance spectroscopy, the electrodes display high sensitivity and are capable of measuring concentrations from 10 to 1000 pg mL−1 in undiluted serum within an hour. The sensor, utilizing solely a monolayer of antibodies, achieves a performance equivalent to that of a commercial standard sandwich ELISA tested in this study.