Exploring the mathematic equations behind the materials science data using interpretable symbolic regression

IF 24.5 Q1 CHEMISTRY, PHYSICAL Interdisciplinary Materials Pub Date : 2024-05-29 DOI:10.1002/idm2.12180
Guanjie Wang, Erpeng Wang, Zefeng Li, Jian Zhou, Zhimei Sun
{"title":"Exploring the mathematic equations behind the materials science data using interpretable symbolic regression","authors":"Guanjie Wang,&nbsp;Erpeng Wang,&nbsp;Zefeng Li,&nbsp;Jian Zhou,&nbsp;Zhimei Sun","doi":"10.1002/idm2.12180","DOIUrl":null,"url":null,"abstract":"<p>Symbolic regression (SR), exploring mathematical expressions from a given data set to construct an interpretable model, emerges as a powerful computational technique with the potential to transform the “black box” machining learning methods into physical and chemistry interpretable expressions in material science research. In this review, the current advancements in SR are investigated, focusing on the underlying theories, fundamental flowcharts, various techniques, implemented codes, and application fields. More predominantly, the challenging issues and future opportunities in SR that should be overcome to unlock the full potential of SR in material design and research, including graphics processing unit acceleration and transfer learning algorithms, the trade-off between expression accuracy and complexity, physical or chemistry interpretable SR with generative large language models, and multimodal SR methods, are discussed.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 5","pages":"637-657"},"PeriodicalIF":24.5000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12180","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Materials","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/idm2.12180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Symbolic regression (SR), exploring mathematical expressions from a given data set to construct an interpretable model, emerges as a powerful computational technique with the potential to transform the “black box” machining learning methods into physical and chemistry interpretable expressions in material science research. In this review, the current advancements in SR are investigated, focusing on the underlying theories, fundamental flowcharts, various techniques, implemented codes, and application fields. More predominantly, the challenging issues and future opportunities in SR that should be overcome to unlock the full potential of SR in material design and research, including graphics processing unit acceleration and transfer learning algorithms, the trade-off between expression accuracy and complexity, physical or chemistry interpretable SR with generative large language models, and multimodal SR methods, are discussed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用可解释的符号回归探索材料科学数据背后的数学方程式
符号回归(SR)是从给定数据集中探索数学表达式以构建可解释模型的方法,它是一种强大的计算技术,具有将 "黑箱 "加工学习方法转化为材料科学研究中物理和化学可解释表达式的潜力。在这篇综述中,我们将重点研究 SR 的基础理论、基本流程图、各种技术、实施代码和应用领域,并对 SR 的当前进展进行研究。更主要的是,讨论了 SR 中应克服的挑战性问题和未来机遇,以释放 SR 在材料设计和研究中的全部潜力,包括图形处理单元加速和迁移学习算法、表达准确性和复杂性之间的权衡、使用生成式大型语言模型的物理或化学可解释 SR 以及多模态 SR 方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Outside Front Cover: Volume 3 Issue 6 Outside Back Cover: Volume 3 Issue 6 Idea of macro-scale and micro-scale prestressed ceramics Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1