Feedbacks Regulating the Salinization of Coastal Landscapes

IF 14.3 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Annual Review of Marine Science Pub Date : 2024-09-11 DOI:10.1146/annurev-marine-070924-031447
Matthew L. Kirwan, Holly A. Michael, Keryn B. Gedan, Katherine L. Tully, Sergio Fagherazzi, Nate G. McDowell, Grace D. Molino, Dannielle Pratt, William G. Reay, Stephanie Stotts
{"title":"Feedbacks Regulating the Salinization of Coastal Landscapes","authors":"Matthew L. Kirwan, Holly A. Michael, Keryn B. Gedan, Katherine L. Tully, Sergio Fagherazzi, Nate G. McDowell, Grace D. Molino, Dannielle Pratt, William G. Reay, Stephanie Stotts","doi":"10.1146/annurev-marine-070924-031447","DOIUrl":null,"url":null,"abstract":"The impact of saltwater intrusion on coastal forests and farmland is typically understood as sea-level-driven inundation of a static terrestrial landscape, where ecosystems neither adapt to nor influence saltwater intrusion. Yet recent observations of tree mortality and reduced crop yields have inspired new process-based research into the hydrologic, geomorphic, biotic, and anthropogenic mechanisms involved. We review several negative feedbacks that help stabilize ecosystems in the early stages of salinity stress (e.g., reduced water use and resource competition in surviving trees, soil accretion, and farmland management). However, processes that reduce salinity are often accompanied by increases in hypoxia and other changes that may amplify saltwater intrusion and vegetation shifts after a threshold is exceeded (e.g., subsidence following tree root mortality). This conceptual framework helps explain observed rates of vegetation change that are less than predicted for a static landscape while recognizing the inevitability of large-scale change.","PeriodicalId":55508,"journal":{"name":"Annual Review of Marine Science","volume":"49 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Marine Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1146/annurev-marine-070924-031447","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The impact of saltwater intrusion on coastal forests and farmland is typically understood as sea-level-driven inundation of a static terrestrial landscape, where ecosystems neither adapt to nor influence saltwater intrusion. Yet recent observations of tree mortality and reduced crop yields have inspired new process-based research into the hydrologic, geomorphic, biotic, and anthropogenic mechanisms involved. We review several negative feedbacks that help stabilize ecosystems in the early stages of salinity stress (e.g., reduced water use and resource competition in surviving trees, soil accretion, and farmland management). However, processes that reduce salinity are often accompanied by increases in hypoxia and other changes that may amplify saltwater intrusion and vegetation shifts after a threshold is exceeded (e.g., subsidence following tree root mortality). This conceptual framework helps explain observed rates of vegetation change that are less than predicted for a static landscape while recognizing the inevitability of large-scale change.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调节沿海景观盐碱化的反馈作用
盐水入侵对沿海森林和农田的影响通常被理解为海平面对静态陆地景观的淹没,生态系统既不适应也不影响盐水入侵。然而,最近对树木死亡和农作物减产的观测结果激发了人们对相关的水文、地貌、生物和人为机制进行新的基于过程的研究。我们回顾了有助于在盐度胁迫早期阶段稳定生态系统的几种负反馈(例如,存活树木减少用水和资源竞争、土壤增生和农田管理)。然而,降低盐度的过程往往伴随着缺氧和其他变化的增加,这些变化可能会在超过阈值后加剧盐水入侵和植被变化(例如,树根死亡后的沉降)。这一概念框架有助于解释观测到的植被变化率低于静态景观的预测值,同时也认识到大规模变化的必然性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual Review of Marine Science
Annual Review of Marine Science 地学-地球化学与地球物理
CiteScore
33.60
自引率
0.60%
发文量
40
期刊介绍: The Annual Review of Marine Science, published since 2009, offers a comprehensive overview of the field. It covers various disciplines, including coastal and blue water oceanography (biological, chemical, geological, and physical), ecology, conservation, and technological advancements related to the marine environment. The journal's transition from gated to open access through Annual Reviews' Subscribe to Open program ensures that all articles are available under a CC BY license, promoting wider accessibility and dissemination of knowledge.
期刊最新文献
Insights Gained from Including People in Our Models of Nature and Modes of Science How Big Is Big? The Effective Population Size of Marine Bacteria Feedbacks Regulating the Salinization of Coastal Landscapes Metabolic Flux Modeling in Marine Ecosystems Coral Disease: Direct and Indirect Agents, Mechanisms of Disease, and Innovations for Increasing Resistance and Resilience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1