Fluid Mechanics of the Dead Sea

IF 7.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Sustainable Chemistry & Engineering Pub Date : 2024-09-11 DOI:10.1146/annurev-fluid-031424-101119
Eckart Meiburg, Nadav G. Lensky
{"title":"Fluid Mechanics of the Dead Sea","authors":"Eckart Meiburg, Nadav G. Lensky","doi":"10.1146/annurev-fluid-031424-101119","DOIUrl":null,"url":null,"abstract":"The environmental setting of the Dead Sea combines several aspects whose interplay creates flow phenomena and transport processes that cannot be observed anywhere else on Earth. As a terminal lake with a rapidly declining surface level, the Dead Sea has a salinity that is close to saturation, so that the buoyancy-driven flows common in lakes are coupled to precipitation and dissolution, and large amounts of salt are being deposited year-round. The Dead Sea is the only hypersaline lake deep enough to form a thermohaline stratification during the summer, which gives rise to descending supersaturated dissolved-salt fingers that precipitate halite particles. In contrast, during the winter the entire supersaturated, well-mixed water column produces halite. The rapid lake level decline of O(1 m/year) exposes vast areas of newly formed beach every year, which exhibit deep incisions from streams. Taken together, these phenomena provide insight into the enigmatic salt giants observed in the Earth's geological record and offer lessons regarding the stability, erosion, and protection of arid coastlines under sea level change.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-fluid-031424-101119","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The environmental setting of the Dead Sea combines several aspects whose interplay creates flow phenomena and transport processes that cannot be observed anywhere else on Earth. As a terminal lake with a rapidly declining surface level, the Dead Sea has a salinity that is close to saturation, so that the buoyancy-driven flows common in lakes are coupled to precipitation and dissolution, and large amounts of salt are being deposited year-round. The Dead Sea is the only hypersaline lake deep enough to form a thermohaline stratification during the summer, which gives rise to descending supersaturated dissolved-salt fingers that precipitate halite particles. In contrast, during the winter the entire supersaturated, well-mixed water column produces halite. The rapid lake level decline of O(1 m/year) exposes vast areas of newly formed beach every year, which exhibit deep incisions from streams. Taken together, these phenomena provide insight into the enigmatic salt giants observed in the Earth's geological record and offer lessons regarding the stability, erosion, and protection of arid coastlines under sea level change.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
死海的流体力学
死海的环境由几个方面组成,这些方面的相互作用产生了地球上其他地方无法观察到的流动现象和迁移过程。死海是一个湖面迅速下降的末端湖泊,盐度接近饱和,因此湖泊中常见的浮力驱动的水流与降水和溶解相耦合,全年都有大量盐分沉积。死海是唯一一个深到足以在夏季形成温盐分层的高盐度湖泊,这使得过饱和的溶解盐向下流动,沉淀出海绿石颗粒。相反,在冬季,整个过饱和、混合良好的水柱都会产生海绿石。湖面以每年 O(1 米)的速度迅速下降,每年都会暴露出大片新形成的海滩,这些海滩呈现出从溪流切入的深度。总之,这些现象让人们了解了在地球地质记录中观察到的神秘的盐巨人,并为海平面变化下干旱海岸线的稳定性、侵蚀和保护提供了经验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
期刊最新文献
Comparative Life Cycle Toxicity Assessment of Perovskite/Silicon Tandem Photovoltaics Dry-Water-System Confined Fabrication of Nanocuring Catalysts for Superior Low-Cure Powder Coating Design of Loose Nanofiltration Membranes by Tailoring Hydrophilicity and Molecular Mass of Deep Eutectic Solvent Additives: Thermodynamics and Kinetics of Phase Inversion Boosting the Oxygen Evolution Reaction Performance of Inert ZnO by Incorporating Ni and Trace-Level Ir for Scalable and Industrial-Level Water-Splitting Catalysts Generation of Ammonia in a Pulsed Hollow Cathode Discharge Operated in an Ar/H2/N2 Gas Mixture Detected by Fourier Transform Infrared
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1