Multiple enhancement effects of dipoles within polyimide cathode promoting highly efficient energy storage of lithium-ion batteries

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Energy Storage Materials Pub Date : 2024-09-12 DOI:10.1016/j.ensm.2024.103779
{"title":"Multiple enhancement effects of dipoles within polyimide cathode promoting highly efficient energy storage of lithium-ion batteries","authors":"","doi":"10.1016/j.ensm.2024.103779","DOIUrl":null,"url":null,"abstract":"<div><p>Polyimide (PI) has been recognized as a potential organic cathode for Li-ion batteries (LIBs) due to its programmable structural design, high theoretical capacity, and resource availability. However, the poor intrinsic electrical conductivity of PI means that PI-based cathodes of LIBs have inefficient energy storage performance, especially at high current densities. In this work, the molecular structure of PI is optimized to obtain a layer-stacked crystalline PI with significantly enhanced dipoles, denoted NT-B for the first time. The dipoles in this PI are induced by the electronegative carbonyl groups from the monomer biuret and further enhanced via a π-π layer stacking effect. This work is the first to verify that the co-directional dipole enhancement effect of biuret is surprisingly different from that of monomer urea. A series of ex-situ/in-situ and theoretical DFT simulations are carried out to understand the functional mechanism of such effects. The multiple enhancement effects of the dipoles synergistically promoting the generation of a strong built-in electric field (BIEF) within NT-B are proposed based on the results obtained. It is confirmed that this BIEF plays a significant role in accelerating electron transport, which enhances the electrochemical activity of LIB cathodes. This work provides a new idea for the structural design of high-performance PI cathodes for LIBs.</p></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":null,"pages":null},"PeriodicalIF":18.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829724006056","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Polyimide (PI) has been recognized as a potential organic cathode for Li-ion batteries (LIBs) due to its programmable structural design, high theoretical capacity, and resource availability. However, the poor intrinsic electrical conductivity of PI means that PI-based cathodes of LIBs have inefficient energy storage performance, especially at high current densities. In this work, the molecular structure of PI is optimized to obtain a layer-stacked crystalline PI with significantly enhanced dipoles, denoted NT-B for the first time. The dipoles in this PI are induced by the electronegative carbonyl groups from the monomer biuret and further enhanced via a π-π layer stacking effect. This work is the first to verify that the co-directional dipole enhancement effect of biuret is surprisingly different from that of monomer urea. A series of ex-situ/in-situ and theoretical DFT simulations are carried out to understand the functional mechanism of such effects. The multiple enhancement effects of the dipoles synergistically promoting the generation of a strong built-in electric field (BIEF) within NT-B are proposed based on the results obtained. It is confirmed that this BIEF plays a significant role in accelerating electron transport, which enhances the electrochemical activity of LIB cathodes. This work provides a new idea for the structural design of high-performance PI cathodes for LIBs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚酰亚胺正极内偶极子的多重增强效应促进锂离子电池的高效储能
聚酰亚胺(PI)因其可编程的结构设计、高理论容量和资源可用性,已被视为锂离子电池(LIB)的潜在有机阴极。然而,聚酰亚胺的固有导电性较差,这意味着基于聚酰亚胺的锂离子电池阴极储能效率较低,尤其是在高电流密度下。本研究优化了 PI 的分子结构,首次获得了偶极子显著增强的层堆叠结晶 PI,命名为 NT-B。这种 PI 中的偶极子由来自单体双缩脲的电负性羰基引起,并通过 π-π 层堆叠效应进一步增强。这项研究首次验证了双缩脲的共向偶极增强效应与单体脲的共向偶极增强效应有着惊人的不同。为了理解这种效应的功能机制,我们进行了一系列原位/原位和理论 DFT 模拟。根据所得结果,提出了偶极子协同促进在 NT-B 中产生强内置电场(BIEF)的多重增强效应。研究证实,这种内置电场在加速电子传输方面发挥了重要作用,从而增强了 LIB 阴极的电化学活性。这项工作为锂电池用高性能 PI 阴极的结构设计提供了新思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
期刊最新文献
Revealing the Intricacies of Natural Convection: A Key Factor in Aqueous Zinc Battery Design Advanced Methods for Characterizing Battery Interfaces: Towards a Comprehensive Understanding of Interfacial Evolution in Modern Batteries Engineering Rare Earth Metal Ce-N Coordination as Catalyst for High Redox Kinetics in Lithium-Sulfur Batteries An electrocatalytic iodine oxidations-based configuration for hydrogen and I2/I3− co-productions driven by the Zn-air/iodine battery NaLiFe(C2O4)2: A Polyanionic Li/Na-ion Battery Cathode Exhibiting Cationic and Anionic Redox
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1