Hollow Urchin-like Ni–Co MOF and RGO Synergistically Functionalizing the Separators for High-Performance Li–S Batteries

IF 3.8 3区 工程技术 Q2 ENGINEERING, CHEMICAL Industrial & Engineering Chemistry Research Pub Date : 2024-09-12 DOI:10.1021/acs.iecr.4c02291
Yuelin Liu, Dan Wei, Yulong Zhang, Shunan Li, Wanying Lei, Mingtao Qiao, Xingfeng Lei
{"title":"Hollow Urchin-like Ni–Co MOF and RGO Synergistically Functionalizing the Separators for High-Performance Li–S Batteries","authors":"Yuelin Liu, Dan Wei, Yulong Zhang, Shunan Li, Wanying Lei, Mingtao Qiao, Xingfeng Lei","doi":"10.1021/acs.iecr.4c02291","DOIUrl":null,"url":null,"abstract":"Parasitic shuttle effects and sluggish polysulfide reaction kinetics severely attenuate the properties of lithium–sulfur (Li–S) batteries, especially the capacity retention and cycling performance. In this work, a hollow urchin-like Ni–Co MOF was first developed, and its coupling with reduced graphene oxide (RGO) modified the commercial PP separators. The electrochemical properties of the Li–S battery have been improved a lot. The initial capacity can reach 1385 mAh g<sup>–1</sup> at 0.1 C, the capacity can maintain 680 mAh g<sup>–1</sup> after 300 cycles at 1 C (89.3% Coulombic efficiency), and the capacity decay rate is only 0.036% per cycle. Then, the comparison between PP and modified separators revealed possible enhancement mechanisms. First, the modified separators display better electrolyte wettability and higher porosity, both of which are beneficial for improving mass transfer efficiency. Second, the hollow urchin-like Ni–Co MOF can provide abundant adsorption and catalytic sites for polysulfides, inhibiting the shuttle effect. Third, RGO nanosheets not only prevent the aggregation of the Ni–Co MOF but also supplement excellent electron conduction. In addition, the CV and LSV curves ascertain the superior chemical reaction kinetics of the modified separators. Thus, the hollow urchin-like Ni–Co MOF and RGO synergistically functionalizing the commercial PP separators can obtain a high-performance Li–S battery.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.4c02291","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Parasitic shuttle effects and sluggish polysulfide reaction kinetics severely attenuate the properties of lithium–sulfur (Li–S) batteries, especially the capacity retention and cycling performance. In this work, a hollow urchin-like Ni–Co MOF was first developed, and its coupling with reduced graphene oxide (RGO) modified the commercial PP separators. The electrochemical properties of the Li–S battery have been improved a lot. The initial capacity can reach 1385 mAh g–1 at 0.1 C, the capacity can maintain 680 mAh g–1 after 300 cycles at 1 C (89.3% Coulombic efficiency), and the capacity decay rate is only 0.036% per cycle. Then, the comparison between PP and modified separators revealed possible enhancement mechanisms. First, the modified separators display better electrolyte wettability and higher porosity, both of which are beneficial for improving mass transfer efficiency. Second, the hollow urchin-like Ni–Co MOF can provide abundant adsorption and catalytic sites for polysulfides, inhibiting the shuttle effect. Third, RGO nanosheets not only prevent the aggregation of the Ni–Co MOF but also supplement excellent electron conduction. In addition, the CV and LSV curves ascertain the superior chemical reaction kinetics of the modified separators. Thus, the hollow urchin-like Ni–Co MOF and RGO synergistically functionalizing the commercial PP separators can obtain a high-performance Li–S battery.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中空海胆状 Ni-Co MOF 和 RGO 协同功能化高性能锂-S 电池的分离器
寄生穿梭效应和缓慢的多硫反应动力学严重削弱了锂硫(Li-S)电池的性能,尤其是容量保持率和循环性能。在这项工作中,首先开发了一种中空海胆状 Ni-Co MOF,并将其与还原氧化石墨烯(RGO)耦合,对商用聚丙烯隔膜进行了改性。锂-S 电池的电化学性能得到了很大改善。在 0.1 摄氏度时,初始容量可达 1385 mAh g-1,在 1 摄氏度时循环 300 次后,容量仍能保持在 680 mAh g-1(库仑效率为 89.3%),且每循环容量衰减率仅为 0.036%。然后,对聚丙烯和改性分离器进行比较,发现了可能的增强机制。首先,改性分离器具有更好的电解质润湿性和更高的孔隙率,这两点都有利于提高传质效率。其次,中空的海胆状 Ni-Co MOF 可为多硫化物提供丰富的吸附和催化位点,从而抑制穿梭效应。第三,RGO 纳米片不仅能防止 Ni-Co MOF 的聚集,还能提供良好的电子传导性。此外,CV 和 LSV 曲线也证实了改性分离器卓越的化学反应动力学性能。因此,将中空海胆状 Ni-Co MOF 和 RGO 协同功能化商用聚丙烯隔膜可获得高性能的锂离子电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Effect of Anchoring Unit, N-Alkyl Chain Length, and Thickness of Titanium Dioxide Layer on the Efficiency of Dye-Sensitized Solar Cells (DSSCs) and Tandem DSSCs Yield Stress Effects on the Dynamics and Liquid Film Thickness of a Taylor Bubble Rising in Vertical and Inclined Tubes Holistic Evaluation Method for Concept-Level Study of Power-to-Liquids Technologies for e-Kerosene Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1