Enhancing Atmospheric Water Harvesting of MIL-101 (Cr) MOF Sorbent with Rapid Desorption Enabled by Ni─Ni3S2 Photothermal Bridge

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-09-12 DOI:10.1002/adfm.202410999
Weicheng Chen, Yangxi Liu, Bolin Xu, Bin Cheng, Muthusankar Ganesan, Yuxuan Tan, Mingyun Luo, Bingzhi Chen, Xiaolong Zhao, Ci Lin, Tingting Qin, Fan Luo, Yutang Fang, Shuangfeng Wang, Xianghui Liang, Wanwan Fu, Bingqiong Tan, Ruquan Ye, Dennis Y.C. Leung, Sai Kishore Ravi
{"title":"Enhancing Atmospheric Water Harvesting of MIL-101 (Cr) MOF Sorbent with Rapid Desorption Enabled by Ni─Ni3S2 Photothermal Bridge","authors":"Weicheng Chen, Yangxi Liu, Bolin Xu, Bin Cheng, Muthusankar Ganesan, Yuxuan Tan, Mingyun Luo, Bingzhi Chen, Xiaolong Zhao, Ci Lin, Tingting Qin, Fan Luo, Yutang Fang, Shuangfeng Wang, Xianghui Liang, Wanwan Fu, Bingqiong Tan, Ruquan Ye, Dennis Y.C. Leung, Sai Kishore Ravi","doi":"10.1002/adfm.202410999","DOIUrl":null,"url":null,"abstract":"Metal–organic frameworks (MOFs) have emerged as leading candidates for atmospheric water harvesting (AWH). Despite their high water uptake capacity, challenges persist in effective solar-driven desorption for water collection. Addressing this, a photothermal bridge is introduced by in situ growth of Ni₃S₂ coating on a thermally conductive nickel mesh, enhancing heat transfer to the MOF and accelerating desorption kinetics. MIL-101 (Cr) MOF in bulk form (BMOF) is bonded to the lightweight Ni─Ni<sub>3</sub>S<sub>2</sub> mesh using adhesive, forming a dual-layer Ni─Ni₃S₂ mesh/BMOF assembly. This hybrid retains a high water uptake of ≈0.63 g g⁻¹ at 60% relative humidity (RH) with superior sorption kinetics. Photothermally driven heat transfer from Ni─Ni₃S₂ to BMOF achieves complete water desorption within 40 min under 1 kW m<sup>−2</sup>. Compared to other configurations like foil, granules, and foam, the mesh-based hybrid has the highest single-cycle adsorption–desorption kinetic of 3.18 × 10⁻<sup>3</sup> g g⁻¹ min⁻¹. Additionally, the hybrid demonstrates exceptional hydrothermal stability over 50 cycles and maintains morphological stability with airflow, ensuring consistent performance. Heat transfer simulations confirm the thermal distribution across the Ni─Ni₃S₂ mesh/BMOF, corroborating the rapid and uniform desorption. This approach paves the way for efficient AWH in high-RH, water-scarce regions by enhancing desorption kinetics through solar energy.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202410999","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metal–organic frameworks (MOFs) have emerged as leading candidates for atmospheric water harvesting (AWH). Despite their high water uptake capacity, challenges persist in effective solar-driven desorption for water collection. Addressing this, a photothermal bridge is introduced by in situ growth of Ni₃S₂ coating on a thermally conductive nickel mesh, enhancing heat transfer to the MOF and accelerating desorption kinetics. MIL-101 (Cr) MOF in bulk form (BMOF) is bonded to the lightweight Ni─Ni3S2 mesh using adhesive, forming a dual-layer Ni─Ni₃S₂ mesh/BMOF assembly. This hybrid retains a high water uptake of ≈0.63 g g⁻¹ at 60% relative humidity (RH) with superior sorption kinetics. Photothermally driven heat transfer from Ni─Ni₃S₂ to BMOF achieves complete water desorption within 40 min under 1 kW m−2. Compared to other configurations like foil, granules, and foam, the mesh-based hybrid has the highest single-cycle adsorption–desorption kinetic of 3.18 × 10⁻3 g g⁻¹ min⁻¹. Additionally, the hybrid demonstrates exceptional hydrothermal stability over 50 cycles and maintains morphological stability with airflow, ensuring consistent performance. Heat transfer simulations confirm the thermal distribution across the Ni─Ni₃S₂ mesh/BMOF, corroborating the rapid and uniform desorption. This approach paves the way for efficient AWH in high-RH, water-scarce regions by enhancing desorption kinetics through solar energy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 Ni─Ni3S2 光热桥快速解吸,提高 MIL-101 (Cr) MOF 吸附剂的大气水收集能力
金属有机框架(MOFs)已成为大气集水(AWH)的主要候选材料。尽管金属有机框架具有很高的吸水能力,但在利用太阳能驱动的有效解吸来收集水方面仍然存在挑战。为了解决这个问题,我们通过在导热镍网上原位生长镍₃S₂涂层来引入光热桥,从而增强 MOF 的热传导并加速解吸动力学。块状 MIL-101 (Cr) MOF(BMOF)通过粘合剂粘合到轻质 Ni─Ni3S2 网片上,形成 Ni─Ni₃S₂ 网片/BMOF 双层组件。这种混合材料在 60% 相对湿度(RH)条件下的吸水率高达 ≈0.63 g g-¹,吸附动力学性能优越。从 Ni─Ni₃S₂ 到 BMOF 的光热驱动传热在 1 kW m-2 的条件下可在 40 分钟内实现完全的水解吸。与铝箔、颗粒和泡沫等其他结构相比,网状混合材料的单循环吸附-解吸动力学最高,达到 3.18 × 10-3 g g-¹ min-¹。此外,这种混合材料在 50 个循环中表现出卓越的水热稳定性,并能在气流中保持形态稳定,从而确保性能的一致性。传热模拟证实了整个镍₃S₂网/BMOF 的热分布,证实了快速均匀的解吸。这种方法通过太阳能增强了解吸动力学,为在高相对湿度、缺水地区实现高效 AWH 铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Substrate Curvature-Induced Regulation of Charge Distribution of Covalent Organic Frameworks Promotes Capacitive Deionization High-Brightness and High-Resolution Triboelectrification-Induced Electroluminescence Skin for Photonic Imaging and Information Interaction Dual-Carbon Assisted Oxygen Vacancy Engineering for Optimizing Mn(III) Sites to Enhance Zn–air Battery Performances Conformal Ordered Solid–Liquid Coupled Piezoelectric Units for Programmable Adaptive Optics Fabrication of Mechanical Strong Supramolecular Waterborne Polyurethane Elastomers With the Inspiration of Hierarchical Dynamic Structures of Scallop Byssal Threads
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1