A Programmable Electronic Skin with Event-Driven In-Sensor Touch Differential and Decision-Making

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-09-12 DOI:10.1002/adfm.202412649
Zhicheng Cao, Yijing Xu, Shifan Yu, Zijian Huang, Yu Hu, Wansheng Lin, Huasen Wang, Yanhao Luo, Yuanjin Zheng, Zhong Chen, Qingliang Liao, Xinqin Liao
{"title":"A Programmable Electronic Skin with Event-Driven In-Sensor Touch Differential and Decision-Making","authors":"Zhicheng Cao, Yijing Xu, Shifan Yu, Zijian Huang, Yu Hu, Wansheng Lin, Huasen Wang, Yanhao Luo, Yuanjin Zheng, Zhong Chen, Qingliang Liao, Xinqin Liao","doi":"10.1002/adfm.202412649","DOIUrl":null,"url":null,"abstract":"High-precise, crosstalk-free tactile perception offers an intuitive way for informative human-machine interactions. However, the differentiation and labeling of touch position and strength require substantial computational space due to the cumbersome post-processing of parallel data. Herein, a programmable and robust electronic skin (PR e-skin) with event-driven in-sensor touch differential and perception, solving the inherent defects in the von Neumann framework is introduced. The PR e-skin realizes feature simplification and reduction of data transmission by integrating the computing framework into sensing terminals. Furthermore, the event-driven functional mode further greatly compresses untriggered redundant data. Benefiting from the minimal concise dataset, the PR e-skin can directly differentiate touch position and pressure with swift response time (<0.3 ms). Robust carbon functional film ensures long-term and stable implementation (>10 000 cycles) of the in-sensor computing architectural feature. In a designable, continuous position detection with an extensive pressure range (210 kPa), which is an improvement of 5.5 times, the PR e-skin can ultra-sensitive extract trajectory sliding or rapping actions. Moreover, combined with customized neural network, a dual-encryption recognition system is constructed based on slide action, reaching a high recognition accuracy of ≈98%, which reveals the great potential in intelligent interaction and security.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202412649","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-precise, crosstalk-free tactile perception offers an intuitive way for informative human-machine interactions. However, the differentiation and labeling of touch position and strength require substantial computational space due to the cumbersome post-processing of parallel data. Herein, a programmable and robust electronic skin (PR e-skin) with event-driven in-sensor touch differential and perception, solving the inherent defects in the von Neumann framework is introduced. The PR e-skin realizes feature simplification and reduction of data transmission by integrating the computing framework into sensing terminals. Furthermore, the event-driven functional mode further greatly compresses untriggered redundant data. Benefiting from the minimal concise dataset, the PR e-skin can directly differentiate touch position and pressure with swift response time (<0.3 ms). Robust carbon functional film ensures long-term and stable implementation (>10 000 cycles) of the in-sensor computing architectural feature. In a designable, continuous position detection with an extensive pressure range (210 kPa), which is an improvement of 5.5 times, the PR e-skin can ultra-sensitive extract trajectory sliding or rapping actions. Moreover, combined with customized neural network, a dual-encryption recognition system is constructed based on slide action, reaching a high recognition accuracy of ≈98%, which reveals the great potential in intelligent interaction and security.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有事件驱动传感器内触摸差分和决策功能的可编程电子皮肤
高精度、无串扰的触觉感知为信息丰富的人机交互提供了一种直观的方式。然而,由于对并行数据进行繁琐的后处理,对触摸位置和力度进行区分和标记需要大量的计算空间。本文介绍了一种可编程的鲁棒性电子皮肤(PR e-skin),它具有事件驱动的传感器内触摸差异和感知功能,解决了冯-诺依曼框架的固有缺陷。PR 电子皮肤通过将计算框架集成到传感终端,实现了功能简化和数据传输的减少。此外,事件驱动功能模式进一步大大压缩了未触发的冗余数据。得益于最小化的简洁数据集,PR e-skin可以直接区分触摸位置和压力,响应时间极短(0.3 毫秒)。坚固的碳功能薄膜确保了传感器内计算架构功能的长期稳定实施(10000 次)。在可设计的连续位置检测中,PR e-skin具有广泛的压力范围(210 kPa),提高了 5.5 倍,可以超灵敏地提取轨迹滑动或敲击动作。此外,结合定制的神经网络,构建了基于滑动动作的双重加密识别系统,识别准确率高达≈98%,显示出在智能交互和安全领域的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Highly Ordered 2D Open Lattices Through Self-Assembly of Magnetic Units Fabrication of Multiscale and Periodically Structured Zirconia Surfaces Using Direct Laser Interference Patterning 2D CrSBr Enables Magnetically Controllable Exciton-Polaritons in an Open Cavity Hydrolytic-Resistance Long-Persistent Luminescence SrAl2O4:Eu2+,Dy3+ Ceramics for Optical Information Storage An Efficient Strategy for Tailoring Interfacial Charge Transfer Pathway on Semiconductor Photocatalysts: A Case of (BiFeO3)x(SrTiO3)1−x/Mn3O4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1