Fault-Tolerant and On-Demand Supra Tough Adhesive Natural Albumin-Based Organohydrogels

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-09-12 DOI:10.1002/adfm.202413171
Hong Chen, Jia Yang, Zhuangzhuang Liu, Yiying Li, Ziqing Tang, Xinlei Shi, Qiang Chen
{"title":"Fault-Tolerant and On-Demand Supra Tough Adhesive Natural Albumin-Based Organohydrogels","authors":"Hong Chen, Jia Yang, Zhuangzhuang Liu, Yiying Li, Ziqing Tang, Xinlei Shi, Qiang Chen","doi":"10.1002/adfm.202413171","DOIUrl":null,"url":null,"abstract":"Adhesive hydrogels play a crucial role in numerous applications across fields such as wound dressing, biomedical implants, and flexible electronics. Despite recent efforts on hydrogel design, reconciling the conflicting requirements of adaptability to rough surfaces and intrinsic strength remains elusive for self-adhesive hydrogels. To address this challenge, a novel strategy is proposed where conformal contact between hydrogels and solids is initially established in a weak state, followed by reinforcement to enhance strength and toughness. Illustrating this approach, bovine serum albumin (BSA) is employed to incorporate a flexible synthetic polymer network, resulting in soft and adhesive organohydrogels (OHGs) with instantaneous and reversible adhesion on various substrates, providing fault-tolerant operation convenience. A brief on-demand heating step transforms them into a strong and supra-adhesive state by forming a rigid BSA network and establishing a double network (DN) structure. The resulting BSA based DN OHGs demonstrate remarkably enhanced bulk mechanical strength and exceptional interfacial toughness on diverse nonporous solid substrates, allowing for on-demand permanent fixation. This approach integrates fault-tolerance and permanent fixation into a single material, highlighting the potential of these natural albumin based OHGs as advanced functional materials for diverse applications, including artisanal restoration, and all-season flexible sensors.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202413171","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Adhesive hydrogels play a crucial role in numerous applications across fields such as wound dressing, biomedical implants, and flexible electronics. Despite recent efforts on hydrogel design, reconciling the conflicting requirements of adaptability to rough surfaces and intrinsic strength remains elusive for self-adhesive hydrogels. To address this challenge, a novel strategy is proposed where conformal contact between hydrogels and solids is initially established in a weak state, followed by reinforcement to enhance strength and toughness. Illustrating this approach, bovine serum albumin (BSA) is employed to incorporate a flexible synthetic polymer network, resulting in soft and adhesive organohydrogels (OHGs) with instantaneous and reversible adhesion on various substrates, providing fault-tolerant operation convenience. A brief on-demand heating step transforms them into a strong and supra-adhesive state by forming a rigid BSA network and establishing a double network (DN) structure. The resulting BSA based DN OHGs demonstrate remarkably enhanced bulk mechanical strength and exceptional interfacial toughness on diverse nonporous solid substrates, allowing for on-demand permanent fixation. This approach integrates fault-tolerance and permanent fixation into a single material, highlighting the potential of these natural albumin based OHGs as advanced functional materials for diverse applications, including artisanal restoration, and all-season flexible sensors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
容错性和按需超强粘性天然白蛋白有机水凝胶
粘性水凝胶在伤口敷料、生物医学植入物和柔性电子器件等众多领域的应用中发挥着至关重要的作用。尽管最近在水凝胶设计方面做出了很多努力,但对于自粘性水凝胶来说,如何协调对粗糙表面的适应性和内在强度这两个相互矛盾的要求仍然是一个难题。为了应对这一挑战,我们提出了一种新的策略,即水凝胶与固体之间的保形接触最初是在弱态下建立的,随后进行加固以增强强度和韧性。牛血清白蛋白(BSA)被用于结合柔性合成聚合物网络,从而产生了柔软且具有粘性的有机水凝胶(OHGs),可在各种基底上实现瞬时和可逆粘附,为容错操作提供了便利。通过形成刚性 BSA 网络和建立双网络 (DN) 结构,一个简短的按需加热步骤就能将它们转化为强力和超粘性状态。由此产生的基于 BSA 的 DN OHGs 在各种无孔固体基底上显示出显著增强的块体机械强度和优异的界面韧性,可实现按需永久固定。这种方法将容错性和永久固定性整合到了一种材料中,凸显了这些基于天然白蛋白的 OHGs 作为先进功能材料在各种应用中的潜力,包括手工修复和四季柔性传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Highly Ordered 2D Open Lattices Through Self-Assembly of Magnetic Units Fabrication of Multiscale and Periodically Structured Zirconia Surfaces Using Direct Laser Interference Patterning 2D CrSBr Enables Magnetically Controllable Exciton-Polaritons in an Open Cavity Hydrolytic-Resistance Long-Persistent Luminescence SrAl2O4:Eu2+,Dy3+ Ceramics for Optical Information Storage An Efficient Strategy for Tailoring Interfacial Charge Transfer Pathway on Semiconductor Photocatalysts: A Case of (BiFeO3)x(SrTiO3)1−x/Mn3O4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1