Synthesis of cotton-like FeCoNi-Nd(OH)3 nanoparticles via reactive mechanical milling: Investigating chemical properties for cellular signaling applications
Y.M. Hernandez-Rodríguez , I. Torres-Sandoval , O. Solorza-Feria , O.E. Cigarroa-Mayorga
{"title":"Synthesis of cotton-like FeCoNi-Nd(OH)3 nanoparticles via reactive mechanical milling: Investigating chemical properties for cellular signaling applications","authors":"Y.M. Hernandez-Rodríguez , I. Torres-Sandoval , O. Solorza-Feria , O.E. Cigarroa-Mayorga","doi":"10.1016/j.apt.2024.104651","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, FeCoNi alloy nanoparticles were combined with Nd(OH)<sub>3</sub> nanostructures to create unique cotton-like nanoparticles (C-NPs). These C-NPs were synthesized through an accessible, two-step reactive chemical milling process. The nanoparticles originated from a blend of metal chlorides (FeCl<sub>2</sub>, CoCl<sub>2</sub>, and NiCl<sub>2</sub>) and sodium (Na), used as a precursor in the reaction, within a SPEX milling apparatus. The Fe, Co, and Ni were maintained at equal weight percentages (1:1:1). Subsequently, NdCl<sub>3</sub> and Na were utilized to facilitate the attachment of Nd(OH)<sub>3</sub> nanostructures onto the FeCoNi nanoparticles through a solid-state reaction in the same SPEX milling setup. The Nd content was varied to investigate its effect on the integration of Nd(OH)<sub>3</sub> onto the surface of CoNiFe nanoparticles. Electron microscopy revealed the formation of cotton-like nanoparticles, and the distribution of elements was identified using secondary ion mass spectrometry. The CoNiFe alloy and Nd(OH)<sub>3</sub> phases were verified by X-ray diffraction analysis. These nanoparticles were internalized into cells via endocytosis, as observed in transmission electron microscopy images after incubation with the BT20 cell line (triple-negative breast cancer), likely due to interactions between –OH groups and the cell membrane. Following this, the cells containing C-NPs underwent photoluminescence studies, revealing two distinct emission peaks at 400 nm, and 486 nm. X-ray photoelectron spectroscopy indicated the presence of various heterostructures within the FeCoNi-Nd(OH)<sub>3</sub> complex, which may be responsible for these emission properties.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 11","pages":"Article 104651"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0921883124003273/pdfft?md5=f718cb25be4d16ce1e91415de7f4111b&pid=1-s2.0-S0921883124003273-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921883124003273","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, FeCoNi alloy nanoparticles were combined with Nd(OH)3 nanostructures to create unique cotton-like nanoparticles (C-NPs). These C-NPs were synthesized through an accessible, two-step reactive chemical milling process. The nanoparticles originated from a blend of metal chlorides (FeCl2, CoCl2, and NiCl2) and sodium (Na), used as a precursor in the reaction, within a SPEX milling apparatus. The Fe, Co, and Ni were maintained at equal weight percentages (1:1:1). Subsequently, NdCl3 and Na were utilized to facilitate the attachment of Nd(OH)3 nanostructures onto the FeCoNi nanoparticles through a solid-state reaction in the same SPEX milling setup. The Nd content was varied to investigate its effect on the integration of Nd(OH)3 onto the surface of CoNiFe nanoparticles. Electron microscopy revealed the formation of cotton-like nanoparticles, and the distribution of elements was identified using secondary ion mass spectrometry. The CoNiFe alloy and Nd(OH)3 phases were verified by X-ray diffraction analysis. These nanoparticles were internalized into cells via endocytosis, as observed in transmission electron microscopy images after incubation with the BT20 cell line (triple-negative breast cancer), likely due to interactions between –OH groups and the cell membrane. Following this, the cells containing C-NPs underwent photoluminescence studies, revealing two distinct emission peaks at 400 nm, and 486 nm. X-ray photoelectron spectroscopy indicated the presence of various heterostructures within the FeCoNi-Nd(OH)3 complex, which may be responsible for these emission properties.
期刊介绍:
The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide.
The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them.
Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)