Novel biopolymer-based active packaging material for food applications: Cinnamaldehyde-loaded calcium nanoparticles incorporated into alginate-carboxymethyl cellulose films
Wanwei Tan , David Julian McClements , Jing Chen , Da Ma
{"title":"Novel biopolymer-based active packaging material for food applications: Cinnamaldehyde-loaded calcium nanoparticles incorporated into alginate-carboxymethyl cellulose films","authors":"Wanwei Tan , David Julian McClements , Jing Chen , Da Ma","doi":"10.1016/j.fpsl.2024.101351","DOIUrl":null,"url":null,"abstract":"<div><p>There is growing emphasis on developing biopolymer-based food packaging materials to improve food quality, reduce food waste, and decrease the risk of foodborne diseases. In this study, cinnamaldehyde (CIN), a natural antimicrobial essential oil, was encapsulated within porous vaterite CaCO<sub>3</sub> (CA) nanoparticles. The encapsulation efficiency and loading capacity of the cinnamaldehyde in the optimized CA-CIN nanoparticles was 88.9 ± 1.3 % and 9.7 ± 1.4 %, respectively. The release of the essential oil from the CA-CIN nanoparticles was triggered under acidic aqueous conditions, indicating they exhibited water/pH release properties. The minimum inhibitory concentration (MIC) of the CA-CIN nanoparticles against both <em>E. coli</em> and <em>S. aureus</em> was 2 mg/mL. <em>In vitro</em> cell culture studies suggested that the CA-CIN nanoparticles exhibited some cytotoxicity (IC<sub>50</sub> = 87 ± 11 μg/mL), indicating that further in vivo toxicity studies are required. A sodium alginate-carboxymethyl cellulose (SC) composite film containing 6 % CA-CIN showed good UV-blocking, water-resistance, and mechanical properties. These films also exhibited good antibacterial activity, extending the shelf life of pork by 2–4 days at 4 ℃. These novel biopolymer-based films may be useful for food preservation applications.</p></div>","PeriodicalId":12377,"journal":{"name":"Food Packaging and Shelf Life","volume":"45 ","pages":"Article 101351"},"PeriodicalIF":8.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Packaging and Shelf Life","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214289424001169","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
There is growing emphasis on developing biopolymer-based food packaging materials to improve food quality, reduce food waste, and decrease the risk of foodborne diseases. In this study, cinnamaldehyde (CIN), a natural antimicrobial essential oil, was encapsulated within porous vaterite CaCO3 (CA) nanoparticles. The encapsulation efficiency and loading capacity of the cinnamaldehyde in the optimized CA-CIN nanoparticles was 88.9 ± 1.3 % and 9.7 ± 1.4 %, respectively. The release of the essential oil from the CA-CIN nanoparticles was triggered under acidic aqueous conditions, indicating they exhibited water/pH release properties. The minimum inhibitory concentration (MIC) of the CA-CIN nanoparticles against both E. coli and S. aureus was 2 mg/mL. In vitro cell culture studies suggested that the CA-CIN nanoparticles exhibited some cytotoxicity (IC50 = 87 ± 11 μg/mL), indicating that further in vivo toxicity studies are required. A sodium alginate-carboxymethyl cellulose (SC) composite film containing 6 % CA-CIN showed good UV-blocking, water-resistance, and mechanical properties. These films also exhibited good antibacterial activity, extending the shelf life of pork by 2–4 days at 4 ℃. These novel biopolymer-based films may be useful for food preservation applications.
期刊介绍:
Food packaging is crucial for preserving food integrity throughout the distribution chain. It safeguards against contamination by physical, chemical, and biological agents, ensuring the safety and quality of processed foods. The evolution of novel food packaging, including modified atmosphere and active packaging, has extended shelf life, enhancing convenience for consumers. Shelf life, the duration a perishable item remains suitable for sale, use, or consumption, is intricately linked with food packaging, emphasizing its role in maintaining product quality and safety.