{"title":"Palladium-catalyzed dicarbonylation of 1,3-butadiene with bidentate phosphine ligands: A density functional theory study","authors":"Zhongxian Yu, Jianhua Song, Dianhua Liu","doi":"10.1016/j.cjche.2024.06.019","DOIUrl":null,"url":null,"abstract":"<div><p>DFT calculations have been performed to discover the mechanism for the synthesis of dimethyl adipate (DMA) by 1,3-butadiene (BD) dicarbonylation catalyzed by a complex consisting of palladium and a bidentate diphosphine ligand. The computational results indicate that BD dicarbonylation involves two catalytic stages with the same reaction mechanism including terminal alkenyl insertion, CO migratory insertion, and methanolysis. Four different reaction routes have been explored, the pathway yielding linear DMA has the lowest alkenyl C–H insertion barrier with an overall barrier of 13.4 kcal·mol<sup>–1</sup> (1 kcal·mol<sup>–1</sup> = 4.184 kJ·mol<sup>–1</sup>). The regioselectivity of the BD dicarbonylation depends mainly on the barrier of the alkenyl insertion into the palladium-hydrogen complex site. The computations well reproduced the experimentally observed linear selectivity.</p></div>","PeriodicalId":9966,"journal":{"name":"Chinese Journal of Chemical Engineering","volume":"74 ","pages":"Pages 92-99"},"PeriodicalIF":3.7000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1004954124002465","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
DFT calculations have been performed to discover the mechanism for the synthesis of dimethyl adipate (DMA) by 1,3-butadiene (BD) dicarbonylation catalyzed by a complex consisting of palladium and a bidentate diphosphine ligand. The computational results indicate that BD dicarbonylation involves two catalytic stages with the same reaction mechanism including terminal alkenyl insertion, CO migratory insertion, and methanolysis. Four different reaction routes have been explored, the pathway yielding linear DMA has the lowest alkenyl C–H insertion barrier with an overall barrier of 13.4 kcal·mol–1 (1 kcal·mol–1 = 4.184 kJ·mol–1). The regioselectivity of the BD dicarbonylation depends mainly on the barrier of the alkenyl insertion into the palladium-hydrogen complex site. The computations well reproduced the experimentally observed linear selectivity.
期刊介绍:
The Chinese Journal of Chemical Engineering (Monthly, started in 1982) is the official journal of the Chemical Industry and Engineering Society of China and published by the Chemical Industry Press Co. Ltd. The aim of the journal is to develop the international exchange of scientific and technical information in the field of chemical engineering. It publishes original research papers that cover the major advancements and achievements in chemical engineering in China as well as some articles from overseas contributors.
The topics of journal include chemical engineering, chemical technology, biochemical engineering, energy and environmental engineering and other relevant fields. Papers are published on the basis of their relevance to theoretical research, practical application or potential uses in the industry as Research Papers, Communications, Reviews and Perspectives. Prominent domestic and overseas chemical experts and scholars have been invited to form an International Advisory Board and the Editorial Committee. It enjoys recognition among Chinese academia and industry as a reliable source of information of what is going on in chemical engineering research, both domestic and abroad.