A novel binary modified beluga whale optimization algorithm using ring crossover and probabilistic state mutation for enhanced bladder cancer diagnosis

Hasan Gharaibeh , Noor Aldeen Alawad , Ahmad Nasayreh , Rabia Emhamed Al Mamlook , Sharif Naser Makhadmeh , Ayah Bashkami , Qais Al-Na'amneh , Laith Abualigah , Absalom E. Ezugwu
{"title":"A novel binary modified beluga whale optimization algorithm using ring crossover and probabilistic state mutation for enhanced bladder cancer diagnosis","authors":"Hasan Gharaibeh ,&nbsp;Noor Aldeen Alawad ,&nbsp;Ahmad Nasayreh ,&nbsp;Rabia Emhamed Al Mamlook ,&nbsp;Sharif Naser Makhadmeh ,&nbsp;Ayah Bashkami ,&nbsp;Qais Al-Na'amneh ,&nbsp;Laith Abualigah ,&nbsp;Absalom E. Ezugwu","doi":"10.1016/j.imu.2024.101581","DOIUrl":null,"url":null,"abstract":"<div><p>Bladder cancer (BC) remains a significant global health challenge, requiring the development of accurate predictive models for diagnosis. In this study, a new Binary Modified White Whale Optimization (B-MBWO) algorithm is proposed to address the BC problem. The proposed method utilizes circular transitivity optimization and the Probabilistic State Mutation Algorithm (PSMA) to enhance its optimization performance. The new method is called the BBWORCPS algorithm. High-dimensional and complex medical datasets pose challenges to the original optimization algorithms in addressing the BC problem, motivating the proposed modifications to the original Beluga Whale Optimization algorithm. These enhancements, including quantum-inspired mutation and circular crossing, aim to improve solution space exploration and enhance the algorithm's effectiveness in handling intricate feature spaces. Through comprehensive experiments on BC datasets, the superiority of the BBWORCPS algorithm in terms of feature selection accuracy and computational efficiency is demonstrated compared to existing optimization methods. The obtained findings suggest that BBWORCPS offers a promising approach for developing more precise and reliable predictive models for bladder cancer analysis.</p></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"50 ","pages":"Article 101581"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352914824001370/pdfft?md5=a1c966072915b1573a288b6f81867e25&pid=1-s2.0-S2352914824001370-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics in Medicine Unlocked","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352914824001370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Bladder cancer (BC) remains a significant global health challenge, requiring the development of accurate predictive models for diagnosis. In this study, a new Binary Modified White Whale Optimization (B-MBWO) algorithm is proposed to address the BC problem. The proposed method utilizes circular transitivity optimization and the Probabilistic State Mutation Algorithm (PSMA) to enhance its optimization performance. The new method is called the BBWORCPS algorithm. High-dimensional and complex medical datasets pose challenges to the original optimization algorithms in addressing the BC problem, motivating the proposed modifications to the original Beluga Whale Optimization algorithm. These enhancements, including quantum-inspired mutation and circular crossing, aim to improve solution space exploration and enhance the algorithm's effectiveness in handling intricate feature spaces. Through comprehensive experiments on BC datasets, the superiority of the BBWORCPS algorithm in terms of feature selection accuracy and computational efficiency is demonstrated compared to existing optimization methods. The obtained findings suggest that BBWORCPS offers a promising approach for developing more precise and reliable predictive models for bladder cancer analysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用环形交叉和概率状态突变的新型二元修正白鲸优化算法,用于增强膀胱癌诊断能力
膀胱癌(BC)仍然是全球健康面临的重大挑战,需要开发准确的预测模型进行诊断。本研究提出了一种新的二元修正白鲸优化算法(B-MBWO)来解决膀胱癌问题。该方法利用循环反演优化和概率状态突变算法(PSMA)来提高优化性能。新方法被称为 BBWORCPS 算法。高维和复杂的医学数据集给原始优化算法解决 BC 问题带来了挑战,这也是对原始白鲸优化算法进行修改的动机。这些改进包括量子启发突变和循环交叉,旨在改善解空间探索,提高算法处理复杂特征空间的效率。通过对 BC 数据集的综合实验,证明了 BBWORCPS 算法与现有优化方法相比,在特征选择准确性和计算效率方面的优越性。研究结果表明,BBWORCPS 为开发更精确、更可靠的膀胱癌分析预测模型提供了一种可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Informatics in Medicine Unlocked
Informatics in Medicine Unlocked Medicine-Health Informatics
CiteScore
9.50
自引率
0.00%
发文量
282
审稿时长
39 days
期刊介绍: Informatics in Medicine Unlocked (IMU) is an international gold open access journal covering a broad spectrum of topics within medical informatics, including (but not limited to) papers focusing on imaging, pathology, teledermatology, public health, ophthalmological, nursing and translational medicine informatics. The full papers that are published in the journal are accessible to all who visit the website.
期刊最新文献
Usability and accessibility in mHealth stroke apps: An empirical assessment Spatiotemporal chest wall movement analysis using depth sensor imaging for detecting respiratory asynchrony Regression and classification of Windkessel parameters from non-invasive cardiovascular quantities using a fully connected neural network Patient2Trial: From patient to participant in clinical trials using large language models Structural modification of Naproxen; physicochemical, spectral, medicinal, and pharmacological evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1