{"title":"A highly effective curcumin-based fluorescent probe with single-wavelength excitation for simultaneous detection and bioimaging of Cys, Hcy and GSH","authors":"","doi":"10.1016/j.saa.2024.125108","DOIUrl":null,"url":null,"abstract":"<div><p>Cysteine (Cys), homocysteine (Hcy) and glutathione (GSH) act as significant roles in many physiological processes, and their abnormal proliferation will cause multiple diseases including Alzheimer’s disease, Parkinson’s disease, Cardiovascular disease, atherosclerosis, and soft tissue damage. However, It is challenging work to develop a efficient method for differentiating and detecting GSH, Cys and Hcy because of their significant similarity in structures and functions. In this work, a smart fluorescent probe <strong>FBCN</strong> based on curcumin was rationally devised and developed by etherifying the phenol hydroxyl group on <strong>FBC</strong> with <strong>NBD-Cl</strong>, which emitted strong green at 516 nm. <strong>FBCN</strong> distinguished Hcy from Cys/GSH with naked eyes based on the color variation of probe solution in sunlight. Meanwhile, GSH induced the powerful fluorescence quenching of probe solution, but the fluorescence color of <strong>FBCN</strong> solution transformed from green to luminous yellow accompanied with emission wavelength redshifted from 516 nm to 540 nm or 553 nm in the existence of Hcy and Cys, respectively. Probe <strong>FBCN</strong> had outstanding sensitivity and anti-interference, low detection limit (56.5 nM, 77.7 nM, and 288 nM corresponded to Cys, Hcy, and GSH, respectively), short response time (the response time of <strong>FBCN</strong> to Cys, Hcy and GSH was 1 min, 2 min and 5 min, respectively). The DFT calculation and HRMS had verified the sensing mechanism of <strong>FBCN</strong> to biothiols. In addition, the probe was successfully utilized to detect three biothiols levels in living cell and zebrafish.</p></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142524012745","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Cysteine (Cys), homocysteine (Hcy) and glutathione (GSH) act as significant roles in many physiological processes, and their abnormal proliferation will cause multiple diseases including Alzheimer’s disease, Parkinson’s disease, Cardiovascular disease, atherosclerosis, and soft tissue damage. However, It is challenging work to develop a efficient method for differentiating and detecting GSH, Cys and Hcy because of their significant similarity in structures and functions. In this work, a smart fluorescent probe FBCN based on curcumin was rationally devised and developed by etherifying the phenol hydroxyl group on FBC with NBD-Cl, which emitted strong green at 516 nm. FBCN distinguished Hcy from Cys/GSH with naked eyes based on the color variation of probe solution in sunlight. Meanwhile, GSH induced the powerful fluorescence quenching of probe solution, but the fluorescence color of FBCN solution transformed from green to luminous yellow accompanied with emission wavelength redshifted from 516 nm to 540 nm or 553 nm in the existence of Hcy and Cys, respectively. Probe FBCN had outstanding sensitivity and anti-interference, low detection limit (56.5 nM, 77.7 nM, and 288 nM corresponded to Cys, Hcy, and GSH, respectively), short response time (the response time of FBCN to Cys, Hcy and GSH was 1 min, 2 min and 5 min, respectively). The DFT calculation and HRMS had verified the sensing mechanism of FBCN to biothiols. In addition, the probe was successfully utilized to detect three biothiols levels in living cell and zebrafish.
期刊介绍:
Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science.
The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments.
Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate.
Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to:
Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences,
Novel experimental techniques or instrumentation for molecular spectroscopy,
Novel theoretical and computational methods,
Novel applications in photochemistry and photobiology,
Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.