Rare earth Nd3+-doped organic-inorganic hybrid perovskite quantum dots for white LED

IF 3.3 3区 物理与天体物理 Q2 OPTICS Journal of Luminescence Pub Date : 2024-09-07 DOI:10.1016/j.jlumin.2024.120876
{"title":"Rare earth Nd3+-doped organic-inorganic hybrid perovskite quantum dots for white LED","authors":"","doi":"10.1016/j.jlumin.2024.120876","DOIUrl":null,"url":null,"abstract":"<div><p>Lead halide perovskite quantum dots (QDs) have garnered significant attention due to their tunable band gaps, unique quantum confinement effects, and high photoluminescence quantum yields (PLQYs). Among them, Organic-inorganic QDs make them promising candidates for optoelectronic devices such as quantum dot light-emitting diodes (QLEDs), solar cells, lasers, and photodetectors. However, the toxicity of lead (Pb) has raised environmental and health concerns, hindering their industrial application. To alleviate concerns about heavy metals Pb, extensive research has been conducted on B-site doping and the development of lead-free perovskites. Herein, we firstly developed B-site doping strategy on organic-inorganic hybrid perovskite QDs via rare-earth elements. Neodymium (III) (Nd<sup>3+</sup>) doped FAPbBr<sub>3</sub> QDs were prepared through the ligand-assisted reprecipitation method at room temperature. The B-site doping strategy could alleviate the heavy metal problem of Pb and modulate the band gap of FAPbBr<sub>3</sub> QDs facilely. The results demonstrated that increasing the concentration of Nd³⁺ can change the emission of FAPbBr₃ QDs from pure green to deep blue. Specifically, we achieved highly pure blue emission (∼438 nm) with a full width at half maximum (FWHM) of 13 nm for Nd³⁺-doped FAPbBr₃ QDs. Time-resolved photoluminescence (TRPL) spectroscopy revealed a decrease in the lifetime of FAPbBr₃ QDs from 22.86 to 15.46 ns as the doping concentration increased. Additionally, we fabricated a white LED (WLED) utilizing blue-emitting Nd³⁺-doped FAPbBr₃, green-emitting FAPbBr₃ QDs, and red QDs, achieving a white emission color coordinate of (0.33, 0.36). This study pioneers the application of B-site rare-earth doping in organic-inorganic hybrid perovskite QDs, demonstrating that B-site composition engineering is a reliable strategy to further exploit the perovskite family for wider optoelectronic applications.</p></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Luminescence","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002223132400440X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Lead halide perovskite quantum dots (QDs) have garnered significant attention due to their tunable band gaps, unique quantum confinement effects, and high photoluminescence quantum yields (PLQYs). Among them, Organic-inorganic QDs make them promising candidates for optoelectronic devices such as quantum dot light-emitting diodes (QLEDs), solar cells, lasers, and photodetectors. However, the toxicity of lead (Pb) has raised environmental and health concerns, hindering their industrial application. To alleviate concerns about heavy metals Pb, extensive research has been conducted on B-site doping and the development of lead-free perovskites. Herein, we firstly developed B-site doping strategy on organic-inorganic hybrid perovskite QDs via rare-earth elements. Neodymium (III) (Nd3+) doped FAPbBr3 QDs were prepared through the ligand-assisted reprecipitation method at room temperature. The B-site doping strategy could alleviate the heavy metal problem of Pb and modulate the band gap of FAPbBr3 QDs facilely. The results demonstrated that increasing the concentration of Nd³⁺ can change the emission of FAPbBr₃ QDs from pure green to deep blue. Specifically, we achieved highly pure blue emission (∼438 nm) with a full width at half maximum (FWHM) of 13 nm for Nd³⁺-doped FAPbBr₃ QDs. Time-resolved photoluminescence (TRPL) spectroscopy revealed a decrease in the lifetime of FAPbBr₃ QDs from 22.86 to 15.46 ns as the doping concentration increased. Additionally, we fabricated a white LED (WLED) utilizing blue-emitting Nd³⁺-doped FAPbBr₃, green-emitting FAPbBr₃ QDs, and red QDs, achieving a white emission color coordinate of (0.33, 0.36). This study pioneers the application of B-site rare-earth doping in organic-inorganic hybrid perovskite QDs, demonstrating that B-site composition engineering is a reliable strategy to further exploit the perovskite family for wider optoelectronic applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于白光 LED 的稀土 Nd3+ 掺杂有机-无机杂化过氧化物量子点
卤化铅包晶量子点(QDs)因其可调带隙、独特的量子约束效应和高光致发光量子产率(PLQYs)而备受关注。其中,有机-无机 QD 使其成为量子点发光二极管(QLED)、太阳能电池、激光器和光电探测器等光电设备的理想候选材料。然而,铅(Pb)的毒性引起了环境和健康方面的担忧,阻碍了它们的工业应用。为了减轻人们对重金属铅的担忧,人们对 B 位掺杂和无铅过氧化物的开发进行了广泛的研究。在此,我们首次通过稀土元素开发了有机-无机杂化包晶QD的B位掺杂策略。掺杂钕 (III) (Nd3+) 的 FAPbBr3 QDs 是通过配体辅助重沉淀法在室温下制备的。B位掺杂策略可以缓解铅的重金属问题,并能方便地调节FAPbBr3 QDs的带隙。结果表明,增加 Nd³⁺ 的浓度可使 FAPbBr₃ QDs 的发射从纯绿色变为深蓝色。具体来说,我们实现了掺杂 Nd³⁺ 的 FAPbBr₃ QDs 的高纯度蓝色发射(∼438 nm),半最大值全宽(FWHM)为 13 nm。时间分辨光致发光 (TRPL) 光谱显示,随着掺杂浓度的增加,FAPbBr₃ QDs 的寿命从 22.86 ns 下降到 15.46 ns。此外,我们还利用掺杂蓝色发光 Nd³⁺、绿色发光 FAPbBr₃ QDs 和红色 QDs 制作了白光 LED(WLED),实现了白光发射色坐标(0.33, 0.36)。该研究开创性地将 B 位稀土掺杂应用于有机-无机杂化包晶QD,证明了 B 位成分工程是进一步利用包晶家族实现更广泛光电应用的可靠策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Luminescence
Journal of Luminescence 物理-光学
CiteScore
6.70
自引率
13.90%
发文量
850
审稿时长
3.8 months
期刊介绍: The purpose of the Journal of Luminescence is to provide a means of communication between scientists in different disciplines who share a common interest in the electronic excited states of molecular, ionic and covalent systems, whether crystalline, amorphous, or liquid. We invite original papers and reviews on such subjects as: exciton and polariton dynamics, dynamics of localized excited states, energy and charge transport in ordered and disordered systems, radiative and non-radiative recombination, relaxation processes, vibronic interactions in electronic excited states, photochemistry in condensed systems, excited state resonance, double resonance, spin dynamics, selective excitation spectroscopy, hole burning, coherent processes in excited states, (e.g. coherent optical transients, photon echoes, transient gratings), multiphoton processes, optical bistability, photochromism, and new techniques for the study of excited states. This list is not intended to be exhaustive. Papers in the traditional areas of optical spectroscopy (absorption, MCD, luminescence, Raman scattering) are welcome. Papers on applications (phosphors, scintillators, electro- and cathodo-luminescence, radiography, bioimaging, solar energy, energy conversion, etc.) are also welcome if they present results of scientific, rather than only technological interest. However, papers containing purely theoretical results, not related to phenomena in the excited states, as well as papers using luminescence spectroscopy to perform routine analytical chemistry or biochemistry procedures, are outside the scope of the journal. Some exceptions will be possible at the discretion of the editors.
期刊最新文献
Top-down approach for the preparation of Au/ZnO nanostructures by glancing-angle ion irradiation: Morphological, structural and optical studies Controlled synthesis of SrFCl: Tb nanoscintillators with improved X-ray detection limit A broadband near-infrared phosphor: Solid-state synthesis, two Cr3+ sites occupation and enhanced thermal stability Energy transfer and tunable photoluminescence of novel white-emitting Sr8MgY(PO4)7: Ce3+/Eu2+/Sm3+ phosphors Study on the structure, energy transfer, and color-tunable photoluminescence of the stable BaY2Si3O10: Bi/Tb/Sm phosphors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1