Photon avalanche effect and spectral control of single LiYF4:Yb3+/Pr3+microparticle

IF 3.3 3区 物理与天体物理 Q2 OPTICS Journal of Luminescence Pub Date : 2024-09-13 DOI:10.1016/j.jlumin.2024.120893
Yujun Wang , Wenxuan Han , Zeyu Sun , Wenzhen Diao , Xin Xie , Guoqiao Li , Zhenglong Zhang , Zhengkun Fu , Hairong Zheng
{"title":"Photon avalanche effect and spectral control of single LiYF4:Yb3+/Pr3+microparticle","authors":"Yujun Wang ,&nbsp;Wenxuan Han ,&nbsp;Zeyu Sun ,&nbsp;Wenzhen Diao ,&nbsp;Xin Xie ,&nbsp;Guoqiao Li ,&nbsp;Zhenglong Zhang ,&nbsp;Zhengkun Fu ,&nbsp;Hairong Zheng","doi":"10.1016/j.jlumin.2024.120893","DOIUrl":null,"url":null,"abstract":"<div><p>Photon avalanche is a special phenomenon of upconversion that the luminescence emission intensity exhibits a significant nonlinear response to the excitation power. Traditional photon avalanche is typically observed in bulk materials, which is not enough to meet requirements of modern techniques as it expect smaller in size and stronger in signal response. In this study, photon avalanche effect is obtained from single LiYF<sub>4</sub>: Yb<sup>3+</sup>/Pr<sup>3+</sup> microparticle. The emission intensity demonstrates a 16-order nonlinear coefficient with excitation intensity change under 835 nm laser excitation. By utilizing the plasmonic effect of noble metal nanoparticles, we successfully modulate the photon avalanche of the particle. Obvious reduction in the threshold of photon avalanche is detected when plasmonic gold nanorods are assembled to the surface of LiYF<sub>4</sub>: Yb<sup>3+</sup>/Pr<sup>3+</sup> microparticle.</p></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":"277 ","pages":"Article 120893"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Luminescence","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022231324004575","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Photon avalanche is a special phenomenon of upconversion that the luminescence emission intensity exhibits a significant nonlinear response to the excitation power. Traditional photon avalanche is typically observed in bulk materials, which is not enough to meet requirements of modern techniques as it expect smaller in size and stronger in signal response. In this study, photon avalanche effect is obtained from single LiYF4: Yb3+/Pr3+ microparticle. The emission intensity demonstrates a 16-order nonlinear coefficient with excitation intensity change under 835 nm laser excitation. By utilizing the plasmonic effect of noble metal nanoparticles, we successfully modulate the photon avalanche of the particle. Obvious reduction in the threshold of photon avalanche is detected when plasmonic gold nanorods are assembled to the surface of LiYF4: Yb3+/Pr3+ microparticle.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单个 LiYF4:Yb3+/Pr3+ 微粒子的光子雪崩效应和光谱控制
光子雪崩是一种特殊的上转换现象,即发光发射强度对激发功率表现出明显的非线性响应。传统的光子雪崩通常是在块状材料中观察到的,由于它的尺寸较小,信号响应较强,因此不能满足现代技术的要求。本研究从单个 LiYF4: Yb3+/Pr3+ 微颗粒中获得了光子雪崩效应。在 835 nm 激光激发下,发射强度随激发强度的变化呈现出 16 阶非线性系数。利用贵金属纳米粒子的质子效应,我们成功地调节了粒子的光子雪崩。在 LiYF4:Yb3+/Pr3+ 微颗粒表面组装等离子体金纳米棒后,光子雪崩的阈值明显降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Luminescence
Journal of Luminescence 物理-光学
CiteScore
6.70
自引率
13.90%
发文量
850
审稿时长
3.8 months
期刊介绍: The purpose of the Journal of Luminescence is to provide a means of communication between scientists in different disciplines who share a common interest in the electronic excited states of molecular, ionic and covalent systems, whether crystalline, amorphous, or liquid. We invite original papers and reviews on such subjects as: exciton and polariton dynamics, dynamics of localized excited states, energy and charge transport in ordered and disordered systems, radiative and non-radiative recombination, relaxation processes, vibronic interactions in electronic excited states, photochemistry in condensed systems, excited state resonance, double resonance, spin dynamics, selective excitation spectroscopy, hole burning, coherent processes in excited states, (e.g. coherent optical transients, photon echoes, transient gratings), multiphoton processes, optical bistability, photochromism, and new techniques for the study of excited states. This list is not intended to be exhaustive. Papers in the traditional areas of optical spectroscopy (absorption, MCD, luminescence, Raman scattering) are welcome. Papers on applications (phosphors, scintillators, electro- and cathodo-luminescence, radiography, bioimaging, solar energy, energy conversion, etc.) are also welcome if they present results of scientific, rather than only technological interest. However, papers containing purely theoretical results, not related to phenomena in the excited states, as well as papers using luminescence spectroscopy to perform routine analytical chemistry or biochemistry procedures, are outside the scope of the journal. Some exceptions will be possible at the discretion of the editors.
期刊最新文献
Multisite occupation mechanism and near-infrared luminescence characteristics of Cr3+ ions in Na-β"-Al2O3 Investigation of radiation-induced luminescence properties of high-density barium phosphate glasses doped with Ce3+ Photoluminescence enhancement of 1,2,4-triaminobenzene molecules by modification with hydrolytically polycondensed 3-aminopropyltriethoxysilane A dual channel NIR-fluorescence probe for simultaneous and independent sensing of SO2 and HSA Unusual manganese luminescence channels in low doped MgAl2O4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1