Ziyi Zhao , Fahimeh Hajiahmadi , Maryam S Alehashem , Allison H Williams
{"title":"Molecular architecture and function of the bacterial stressosome","authors":"Ziyi Zhao , Fahimeh Hajiahmadi , Maryam S Alehashem , Allison H Williams","doi":"10.1016/j.mib.2024.102541","DOIUrl":null,"url":null,"abstract":"<div><p>The bacterial stressosome is a supramolecular multiprotein complex that acts as a critical signal integration and transduction hub, orchestrating cellular responses to environmental stimuli. Recent studies have resolved near-atomic stressosome structures from various bacterial species, revealing assemblies that should be capable of altering their configuration in response to external changes. Further genetic, biochemical, and cell biology research has elucidated interactions and phosphorylation status within the stressosome complex as well as its subcellular localization and mobility within living cells. These insights enhance our comprehension of the stressosome pathways and their roles in directing various survival responses during environmental stress.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"82 ","pages":"Article 102541"},"PeriodicalIF":5.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369527424001176","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The bacterial stressosome is a supramolecular multiprotein complex that acts as a critical signal integration and transduction hub, orchestrating cellular responses to environmental stimuli. Recent studies have resolved near-atomic stressosome structures from various bacterial species, revealing assemblies that should be capable of altering their configuration in response to external changes. Further genetic, biochemical, and cell biology research has elucidated interactions and phosphorylation status within the stressosome complex as well as its subcellular localization and mobility within living cells. These insights enhance our comprehension of the stressosome pathways and their roles in directing various survival responses during environmental stress.
期刊介绍:
Current Opinion in Microbiology is a systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of microbiology. It consists of 6 issues per year covering the following 11 sections, each of which is reviewed once a year:
Host-microbe interactions: bacteria
Cell regulation
Environmental microbiology
Host-microbe interactions: fungi/parasites/viruses
Antimicrobials
Microbial systems biology
Growth and development: eukaryotes/prokaryotes