Transport fingerprints of helical edge states in Sierpiński tapestries

IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY Physica E-low-dimensional Systems & Nanostructures Pub Date : 2024-09-05 DOI:10.1016/j.physe.2024.116097
M.A. Toloza Sandoval, A.L. Araújo, F. Crasto de Lima, A. Fazzio
{"title":"Transport fingerprints of helical edge states in Sierpiński tapestries","authors":"M.A. Toloza Sandoval,&nbsp;A.L. Araújo,&nbsp;F. Crasto de Lima,&nbsp;A. Fazzio","doi":"10.1016/j.physe.2024.116097","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, synthesis and experimental research of fractalized materials has evolved in a paradigmatic crossroad with topological states of matter. Here, we present a theoretical investigation of the helical edge transport in Sierpiński carpets (SCs), combining the Bernevig–Hughes–Zhang model with the Landauer transport framework. By starting from a pristine two-dimensional topological insulator, the results reveal vanishing and reentrant resonant transport modes enabled for increased SC fractal generation. We observe that fractal with superior hierarchy inherits characteristics due to self-similarity and present conductance patterns resembling a miniband transport picture with fractal fingerprints. Real-space mapping of emerging resonant and antiresonant states provides an unprecedented view of helical-edge currents encoded in these intricate geometries and their multiple edges, underscoring the significance and consistency of our findings.</p></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"165 ","pages":"Article 116097"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947724002017","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, synthesis and experimental research of fractalized materials has evolved in a paradigmatic crossroad with topological states of matter. Here, we present a theoretical investigation of the helical edge transport in Sierpiński carpets (SCs), combining the Bernevig–Hughes–Zhang model with the Landauer transport framework. By starting from a pristine two-dimensional topological insulator, the results reveal vanishing and reentrant resonant transport modes enabled for increased SC fractal generation. We observe that fractal with superior hierarchy inherits characteristics due to self-similarity and present conductance patterns resembling a miniband transport picture with fractal fingerprints. Real-space mapping of emerging resonant and antiresonant states provides an unprecedented view of helical-edge currents encoded in these intricate geometries and their multiple edges, underscoring the significance and consistency of our findings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锡耶宾斯基挂毯中螺旋边缘态的传输指纹
最近,分形材料的合成和实验研究与物质的拓扑态发生了典型的交叉。在这里,我们结合 Bernevig-Hughes-Zhang 模型和 Landauer 输运框架,对 Sierpiński 地毯(SCs)中的螺旋边缘输运进行了理论研究。从一个原始的二维拓扑绝缘体出发,研究结果揭示了消失和重入共振输运模式,从而增加了 SC 分形的生成。我们观察到,具有高级层次的分形继承了自相似性的特征,并呈现出类似于带有分形指纹的迷你带传输图的传导模式。新出现的谐振和反谐振状态的实空间映射,为这些复杂几何结构及其多边缘编码的螺旋边电流提供了前所未有的视角,突出了我们研究结果的重要性和一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.30
自引率
6.10%
发文量
356
审稿时长
65 days
期刊介绍: Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals. Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena. Keywords: • topological insulators/superconductors, majorana fermions, Wyel semimetals; • quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems; • layered superconductivity, low dimensional systems with superconducting proximity effect; • 2D materials such as transition metal dichalcogenides; • oxide heterostructures including ZnO, SrTiO3 etc; • carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.) • quantum wells and superlattices; • quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect; • optical- and phonons-related phenomena; • magnetic-semiconductor structures; • charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling; • ultra-fast nonlinear optical phenomena; • novel devices and applications (such as high performance sensor, solar cell, etc); • novel growth and fabrication techniques for nanostructures
期刊最新文献
GST and BFO assisted microring resonator for nanoplasmonic applications Josephson and thermophase effect in interacting T-shaped double quantum dots system Photonic modes in twisted graphene nanoribbons Uncovering bound states in the continuum in InSb nanowire networks Enhanced piezoelectricity induced by transition metal atoms adsorption on monolayer and bilayer MoS2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1