{"title":"Nanoscale fluconazole-constructed metal-organic frameworks with smart drug release for eradication of Candida biofilms in vulvovaginitis infection","authors":"","doi":"10.1016/j.colsurfb.2024.114238","DOIUrl":null,"url":null,"abstract":"<div><p>Fungal infections associated with oral, gynecological, and skin ailments pose significant clinical challenges. The presence of biofilms often hampers the efficacy of conventional antifungal drugs owing to the complex microenvironment they create. In this study, the widely used antifungal medication fluconazole is utilized as a foundational component to be incorporated into zinc 2-methylimidazolate frameworks, resulting in the synthesis of nanoscale fluconazole-constructed metal-organic frameworks (F-ZIF). The F-ZIF is constructed through coordination interactions between zinc and fluconazole, retaining the structure and pH-responsiveness of the zinc 2-methylimidazolate framework. The pH-responsiveness F-ZIF makes sure the fluconazole can be released in acidic biofilm, which prevents the undesired release in healthy tissue, resulting in good biocompatibility both <em>in vitro</em> and <em>in vivo</em>. The <em>in vitro</em> studies demonstrated that F-ZIF exhibits enhanced efficacy in eradicating fungal pathogens in their biofilm growth state compared with the free fluconazole. Furthermore, <em>in vivo</em> experiments reveal the better effectiveness of F-ZIF in treating <em>Candida albicans</em>-induced vulvovaginal candidiasis, and less infection-related inflammation was observed. Hence, the one-port synthetic F-ZIF presents a promising solution for addressing fungal biofilm-related infections.</p></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776524004971","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Fungal infections associated with oral, gynecological, and skin ailments pose significant clinical challenges. The presence of biofilms often hampers the efficacy of conventional antifungal drugs owing to the complex microenvironment they create. In this study, the widely used antifungal medication fluconazole is utilized as a foundational component to be incorporated into zinc 2-methylimidazolate frameworks, resulting in the synthesis of nanoscale fluconazole-constructed metal-organic frameworks (F-ZIF). The F-ZIF is constructed through coordination interactions between zinc and fluconazole, retaining the structure and pH-responsiveness of the zinc 2-methylimidazolate framework. The pH-responsiveness F-ZIF makes sure the fluconazole can be released in acidic biofilm, which prevents the undesired release in healthy tissue, resulting in good biocompatibility both in vitro and in vivo. The in vitro studies demonstrated that F-ZIF exhibits enhanced efficacy in eradicating fungal pathogens in their biofilm growth state compared with the free fluconazole. Furthermore, in vivo experiments reveal the better effectiveness of F-ZIF in treating Candida albicans-induced vulvovaginal candidiasis, and less infection-related inflammation was observed. Hence, the one-port synthetic F-ZIF presents a promising solution for addressing fungal biofilm-related infections.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.