Translucent persistent luminescence glass matrix composite obtained by pressureless viscous sintering

IF 3 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materialia Pub Date : 2024-09-05 DOI:10.1016/j.mtla.2024.102222
{"title":"Translucent persistent luminescence glass matrix composite obtained by pressureless viscous sintering","authors":"","doi":"10.1016/j.mtla.2024.102222","DOIUrl":null,"url":null,"abstract":"<div><p>Translucent persistent luminescence glass matrix composites (PeL-GMCs) were successfully obtained for the first time using a pressureless viscous sintering method with silicate glass as the host material. Initially, persistent luminescence microparticles (PeL-MPs) of SrAl<sub>2</sub>O<sub>4</sub>: Eu<sup>2+</sup>; Dy<sup>3+</sup> were prepared by microwave-assisted synthesis under a reducing atmosphere. To obtain persistent luminescent glass matrix composites, 1 wt. % of these particles were mixed with soda-lime-silicate glass beads and pressed into pellets. Subsequently, the disk-shaped samples were heat-treated through pressureless viscous sintering. Despite some material porosity, the PeL-GMCs exhibited translucency and prolonged persistent luminescence <span><math><mrow><mo>(</mo><mrow><mo>∼</mo><mspace></mspace><mn>12</mn><mspace></mspace><mi>m</mi><mi>i</mi><mi>n</mi></mrow><mo>)</mo></mrow></math></span>. Additionally, we noted excellent compatibility between the PeL-MPs and the glass host, since no chemical interaction was found, as verified by optical microscopy, energy dispersive X-ray (EDX) mapping analysis and cathodoluminescence (CL) in SEM. Furthermore, the afterglow intensity of the particles was maintained after the preparation of materials.</p></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152924002199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Translucent persistent luminescence glass matrix composites (PeL-GMCs) were successfully obtained for the first time using a pressureless viscous sintering method with silicate glass as the host material. Initially, persistent luminescence microparticles (PeL-MPs) of SrAl2O4: Eu2+; Dy3+ were prepared by microwave-assisted synthesis under a reducing atmosphere. To obtain persistent luminescent glass matrix composites, 1 wt. % of these particles were mixed with soda-lime-silicate glass beads and pressed into pellets. Subsequently, the disk-shaped samples were heat-treated through pressureless viscous sintering. Despite some material porosity, the PeL-GMCs exhibited translucency and prolonged persistent luminescence (12min). Additionally, we noted excellent compatibility between the PeL-MPs and the glass host, since no chemical interaction was found, as verified by optical microscopy, energy dispersive X-ray (EDX) mapping analysis and cathodoluminescence (CL) in SEM. Furthermore, the afterglow intensity of the particles was maintained after the preparation of materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过无压粘性烧结获得半透明持久发光玻璃基复合材料
以硅酸盐玻璃为基体材料,采用无压粘性烧结法首次成功获得了半透明的持久发光玻璃基复合材料(PeL-GMCs)。首先,在还原气氛下通过微波辅助合成法制备了 SrAl2O4: Eu2+; Dy3+ 的持久发光微颗粒(PeL-MPs)。为了获得持久发光玻璃基复合材料,将 1 wt. % 的这些颗粒与钠钙硅酸盐玻璃珠混合并压制成颗粒。随后,通过无压粘性烧结对盘状样品进行热处理。尽管材料存在一些孔隙,但 PeL-GMCs 仍然表现出半透明性和长时间的持续发光(12 分钟)。此外,我们还注意到 PeL-MPs 与玻璃基体之间具有极佳的相容性,因为通过光学显微镜、能量色散 X 射线(EDX)图谱分析和扫描电镜阴极发光(CL)均未发现化学作用。此外,在制备材料后,颗粒的余辉强度保持不变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materialia
Materialia MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.40
自引率
2.90%
发文量
345
审稿时长
36 days
期刊最新文献
β-Grain refinement in WAAM Ti-6Al-4 V processed with inter-pass ultrasonic impact peening Confinement effects on microstructure length scale selection in chill-cast stainless steel AC electric field-induced changes in viscosity of aqueous ceramic suspensions and tuning of freeze-cast microstructure and compressive strength Compressive behavior of SLA open-cell lattices: A comparison between triply periodic minimal surface gyroid and stochastic structures for artificial bone Mechanical response of LPBFed TI64 thickness graded Voronoi lattice structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1