Constructing Pr-doped CoOOH catalytic sites for efficient electrooxidation of 5-hydroxymethylfurfural

IF 13.1 1区 化学 Q1 Energy Journal of Energy Chemistry Pub Date : 2024-08-30 DOI:10.1016/j.jechem.2024.08.041
{"title":"Constructing Pr-doped CoOOH catalytic sites for efficient electrooxidation of 5-hydroxymethylfurfural","authors":"","doi":"10.1016/j.jechem.2024.08.041","DOIUrl":null,"url":null,"abstract":"<div><p>Electrocatalytic conversion of renewable biomass is emerging as a promising route for sustainable chemical production; hence it urgently calls for developing efficient electrocatalysts with low potentials and high current densities. Herein, a Pr-doped Co(OH)<sub>2</sub> hexagonal sheet (Pr/Co = 1/9, in mole) is synthesized by electrodeposition as highly performant catalyst for 5-hydroxymethylfurfural (HMF) oxidation reaction (HMFOR) to produce 2,5-furandicarboxylic acid (FDCA). This novel and low-cost catalyst possesses a rather low onset potential of 1.05 V (vs. RHE) and requires only 1.10 V (vs. RHE) to reach a current density of 10 mA cm<sup>−2</sup> for HMFOR, significantly outperforming Co(OH)<sub>2</sub> benchmark (i.e., 210 mV higher to reach 10 mA cm<sup>−2</sup>). The origin of Pr promotion effect as well as the evolution of CoOOH catalytic sites and HMFOR process has been deeply elucidated by physical characterizations, kinetic experiments, in situ electrochemical techniques, and theoretical calculations. The unique Pr-ameliorated CoOOH active centers enable 100% conversion of HMF, 99.6% selectivity of FDCA, and 99.7% Faraday efficiency, with a superior cycling durability toward HMFOR. This can be one of the most outstanding results for Co-based HMFOR catalysts to date in the literature. Thereby this work can help open up new horizons for constructing novel and efficient Co-based electrocatalysts by the utilization of lanthanide elements.</p></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624005977","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalytic conversion of renewable biomass is emerging as a promising route for sustainable chemical production; hence it urgently calls for developing efficient electrocatalysts with low potentials and high current densities. Herein, a Pr-doped Co(OH)2 hexagonal sheet (Pr/Co = 1/9, in mole) is synthesized by electrodeposition as highly performant catalyst for 5-hydroxymethylfurfural (HMF) oxidation reaction (HMFOR) to produce 2,5-furandicarboxylic acid (FDCA). This novel and low-cost catalyst possesses a rather low onset potential of 1.05 V (vs. RHE) and requires only 1.10 V (vs. RHE) to reach a current density of 10 mA cm−2 for HMFOR, significantly outperforming Co(OH)2 benchmark (i.e., 210 mV higher to reach 10 mA cm−2). The origin of Pr promotion effect as well as the evolution of CoOOH catalytic sites and HMFOR process has been deeply elucidated by physical characterizations, kinetic experiments, in situ electrochemical techniques, and theoretical calculations. The unique Pr-ameliorated CoOOH active centers enable 100% conversion of HMF, 99.6% selectivity of FDCA, and 99.7% Faraday efficiency, with a superior cycling durability toward HMFOR. This can be one of the most outstanding results for Co-based HMFOR catalysts to date in the literature. Thereby this work can help open up new horizons for constructing novel and efficient Co-based electrocatalysts by the utilization of lanthanide elements.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
构建掺杂 Pr 的 CoOOH 催化位点以高效电氧化 5-羟甲基糠醛
可再生生物质的电催化转化正在成为可持续化学品生产的一条大有可为的途径,因此迫切需要开发低电位、高电流密度的高效电催化剂。本文通过电沉积法合成了一种掺杂 Pr 的 Co(OH)2 六边形薄片(Pr/Co = 1/9,摩尔数),作为高效催化剂用于 5-羟甲基糠醛(HMF)氧化反应(HMFOR)以生产 2,5-呋喃二甲酸(FDCA)。这种新型低成本催化剂的起始电位相当低,仅为 1.05 V(相对于 RHE),只需要 1.10 V(相对于 RHE)就能使 HMFOR 的电流密度达到 10 mA cm-2,明显优于 Co(OH)2 基准(即高 210 mV 才能达到 10 mA cm-2)。通过物理表征、动力学实验、原位电化学技术和理论计算,我们深入阐明了镨促进效应的起源以及 CoOOH 催化位点的演变和 HMFOR 过程。独特的镨釉化 CoOOH 活性中心使 HMF 的转化率达到 100%,对 FDCA 的选择性达到 99.6%,法拉第效率达到 99.7%,并且对 HMFOR 具有卓越的循环耐久性。这是迄今为止在 Co 基 HMFOR 催化剂方面取得的最杰出成果之一。因此,这项工作有助于为利用镧系元素构建新型高效的 Co 基电催化剂开辟新天地。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
期刊最新文献
Unraveling the exceptional kinetics of Zn||organic batteries in hydrated deep eutectic solution Electronic modulation towards MOFs as template derived CoP via engineered heteroatom defect for a highly efficient overall water splitting Enhanced dynamics of Al3+/H+ ions in aqueous aluminum ion batteries: Construction of metastable structures in vanadium pentoxide upon oxygen vacancies Upcycling of monomers derived from waste polyester plastics via electrocatalysis Design principles of novel Zn fluorocarboxylate protection layer toward durable dendrite-free Zn metal anodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1