In silico modelling of CD8 T cell immune response links genetic regulation to population dynamics

Thi Nhu Thao Nguyen , Madge Martin , Christophe Arpin , Samuel Bernard , Olivier Gandrillon , Fabien Crauste
{"title":"In silico modelling of CD8 T cell immune response links genetic regulation to population dynamics","authors":"Thi Nhu Thao Nguyen ,&nbsp;Madge Martin ,&nbsp;Christophe Arpin ,&nbsp;Samuel Bernard ,&nbsp;Olivier Gandrillon ,&nbsp;Fabien Crauste","doi":"10.1016/j.immuno.2024.100043","DOIUrl":null,"url":null,"abstract":"<div><p>The CD8 T cell immune response operates at multiple temporal and spatial scales, including all the early complex biochemical and biomechanical processes, up to long term cell population behavior.</p><p>In order to model this response, we devised a multiscale agent-based approach using <span>Simuscale</span> software. Within each agent (cell) of our model, we introduced a gene regulatory network (GRN) based upon a piecewise deterministic Markov process formalism. Cell fate – differentiation, proliferation, death – was coupled to the state of the GRN through rule-based mechanisms. Cells interact in a 3D computational domain and signal to each other via cell–cell contacts, influencing the GRN behavior.</p><p>Results show the ability of the model to correctly capture both population behavior and molecular time-dependent evolution. We examined the impact of several parameters on molecular and population dynamics, and demonstrated the add-on value of using a multiscale approach by showing the influence of molecular parameters, particularly protein degradation rates, on the outcome of the response, such as effector and memory cell counts.</p></div>","PeriodicalId":73343,"journal":{"name":"Immunoinformatics (Amsterdam, Netherlands)","volume":"15 ","pages":"Article 100043"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667119024000132/pdfft?md5=92c4f652893809c6f3e06131e312c290&pid=1-s2.0-S2667119024000132-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunoinformatics (Amsterdam, Netherlands)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667119024000132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The CD8 T cell immune response operates at multiple temporal and spatial scales, including all the early complex biochemical and biomechanical processes, up to long term cell population behavior.

In order to model this response, we devised a multiscale agent-based approach using Simuscale software. Within each agent (cell) of our model, we introduced a gene regulatory network (GRN) based upon a piecewise deterministic Markov process formalism. Cell fate – differentiation, proliferation, death – was coupled to the state of the GRN through rule-based mechanisms. Cells interact in a 3D computational domain and signal to each other via cell–cell contacts, influencing the GRN behavior.

Results show the ability of the model to correctly capture both population behavior and molecular time-dependent evolution. We examined the impact of several parameters on molecular and population dynamics, and demonstrated the add-on value of using a multiscale approach by showing the influence of molecular parameters, particularly protein degradation rates, on the outcome of the response, such as effector and memory cell counts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CD8 T 细胞免疫反应的硅学建模将遗传调控与种群动态联系起来
CD8 T 细胞免疫反应在多个时间和空间尺度上运行,包括所有早期复杂的生物化学和生物力学过程,以及长期的细胞群行为。为了模拟这种反应,我们使用 Simuscale 软件设计了一种基于多尺度代理的方法。在模型的每个代理(细胞)中,我们都引入了基于片断确定性马尔可夫过程形式主义的基因调控网络(GRN)。细胞的命运--分化、增殖、死亡--通过基于规则的机制与基因调控网络的状态相耦合。结果表明,该模型能够正确捕捉群体行为和分子随时间变化的演化。我们研究了几个参数对分子和群体动力学的影响,并通过展示分子参数(尤其是蛋白质降解率)对效应细胞和记忆细胞数量等反应结果的影响,证明了使用多尺度方法的附加价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Immunoinformatics (Amsterdam, Netherlands)
Immunoinformatics (Amsterdam, Netherlands) Immunology, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
60 days
期刊最新文献
Scifer: An R/Bioconductor package for large-scale integration of Sanger sequencing and flow cytometry data of index-sorted single cells Lessons learned from the IMMREP23 TCR-epitope prediction challenge Multicohort analysis identifies conserved transcriptional interactions between humans and Plasmodium falciparum In silico modelling of CD8 T cell immune response links genetic regulation to population dynamics Data mining antibody sequences for database searching in bottom-up proteomics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1