Morphology-dependent support effect of PdCu/alpha-Fe2O3 catalysts on Suzuki-Miyaura cross-coupling reaction

IF 4.1 2区 材料科学 Q2 ENGINEERING, CHEMICAL Particuology Pub Date : 2024-08-29 DOI:10.1016/j.partic.2024.08.007
Ying Zhang , Chengshan Dai , Hongyu Fan , Junnan Chen , Li Gao , Bingsen Zhang
{"title":"Morphology-dependent support effect of PdCu/alpha-Fe2O3 catalysts on Suzuki-Miyaura cross-coupling reaction","authors":"Ying Zhang ,&nbsp;Chengshan Dai ,&nbsp;Hongyu Fan ,&nbsp;Junnan Chen ,&nbsp;Li Gao ,&nbsp;Bingsen Zhang","doi":"10.1016/j.partic.2024.08.007","DOIUrl":null,"url":null,"abstract":"<div><p>The palladium-catalyzed Suzuki-Miyaura cross-coupling (SMC) reaction has received worldwide attention as a powerful and convenient synthetic tool for the formation of biaryl compounds. However, these reactions are highly dependent on the activity and stable of catalysts. Herein, the support morphology-dependent catalytic performance of SMC reactions was investigated. The truncated hexagonal bipyramid (α-Fe<sub>2</sub>O<sub>3</sub>-O) and rod-shaped morphologies of alpha-Fe<sub>2</sub>O<sub>3</sub> (α-Fe<sub>2</sub>O<sub>3</sub>-R) were used as support to prepare PdCu nanoparticles (NPs) catalysts by NaBH<sub>4</sub> reduction method. For PdCu/α-Fe<sub>2</sub>O<sub>3</sub>-R catalysts, the smaller size of PdCu NPs and more low coordination Pd sites leading to its superior catalytic performance for SMC reactions. Furthermore, it can be easily recycled through centrifugation and reused several times without obvious loss on its catalytic performance. Identical location transmission electron microscopy method was used to investigate the structural evolution of PdCu/α-Fe<sub>2</sub>O<sub>3</sub>-R catalysts. The results found that its structure almost unchanged during the catalytic reaction.</p></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"94 ","pages":"Pages 274-280"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124001627","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The palladium-catalyzed Suzuki-Miyaura cross-coupling (SMC) reaction has received worldwide attention as a powerful and convenient synthetic tool for the formation of biaryl compounds. However, these reactions are highly dependent on the activity and stable of catalysts. Herein, the support morphology-dependent catalytic performance of SMC reactions was investigated. The truncated hexagonal bipyramid (α-Fe2O3-O) and rod-shaped morphologies of alpha-Fe2O3 (α-Fe2O3-R) were used as support to prepare PdCu nanoparticles (NPs) catalysts by NaBH4 reduction method. For PdCu/α-Fe2O3-R catalysts, the smaller size of PdCu NPs and more low coordination Pd sites leading to its superior catalytic performance for SMC reactions. Furthermore, it can be easily recycled through centrifugation and reused several times without obvious loss on its catalytic performance. Identical location transmission electron microscopy method was used to investigate the structural evolution of PdCu/α-Fe2O3-R catalysts. The results found that its structure almost unchanged during the catalytic reaction.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PdCu/alpha-Fe2O3 催化剂的形态对 Suzukii-Miyaura 交叉偶联反应的支撑效应
钯催化的Suzuki-Miyaura交叉偶联(SMC)反应作为生成双芳基化合物的一种强大而便捷的合成工具,受到了全世界的关注。然而,这些反应高度依赖于催化剂的活性和稳定性。本文研究了 SMC 反应的催化性能与载体形态的关系。采用 NaBH4 还原法制备 PdCu 纳米颗粒 (NPs) 催化剂时,使用了截顶六角形双锥体 (α-Fe2O3-O)和杆状形态的α-Fe2O3 (α-Fe2O3-R)作为载体。在 PdCu/α-Fe2O3-R 催化剂中,PdCu NPs 的尺寸较小,低配位钯位点较多,因此在 SMC 反应中具有优异的催化性能。此外,该催化剂可通过离心分离轻松回收并多次重复使用,其催化性能不会明显下降。采用同位透射电子显微镜方法研究了 PdCu/α-Fe2O3-R 催化剂的结构演变。结果发现,其结构在催化反应过程中几乎没有变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Particuology
Particuology 工程技术-材料科学:综合
CiteScore
6.70
自引率
2.90%
发文量
1730
审稿时长
32 days
期刊介绍: The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles. Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors. Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology. Key topics concerning the creation and processing of particulates include: -Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales -Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes -Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc. -Experimental and computational methods for visualization and analysis of particulate system. These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.
期刊最新文献
Mesoscale modeling on the influence of surfactants on seepage law during water injection in coal Optimisation of parameters of a dual-axis soil remediation device based on response surface methodology and machine learning algorithm Study of hydraulic transport characteristics and erosion wear of twisted four-lobed pipe based on CFD-DEM A comprehensive numerical investigation of the spray characteristics in spill-return atomizers using coupled VOF and Euler-Lagrange approach Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1