Estimation of Tension Force in Tension Members Using GRU Algorithm Based on Yoke-Type Elasto-Magnetic Sensor Data

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Letters Pub Date : 2024-08-29 DOI:10.1109/LSENS.2024.3451405
Ho-Jun Lee;Sae-Byeok Kyung;Sung-Won Kim;Eun-Yul Lee;Ju-Won Kim
{"title":"Estimation of Tension Force in Tension Members Using GRU Algorithm Based on Yoke-Type Elasto-Magnetic Sensor Data","authors":"Ho-Jun Lee;Sae-Byeok Kyung;Sung-Won Kim;Eun-Yul Lee;Ju-Won Kim","doi":"10.1109/LSENS.2024.3451405","DOIUrl":null,"url":null,"abstract":"This letter proposes a method to the estimation of tension force in tension members using the grated recurrent unit (GRU) algorithm. In this letter, a yoke-type elasto-magnetic (E/M) sensor was developed based on numerical ANSYS Maxwell simulations to enhance the applicability through the structural improvement of the existing solenoid-type magnetized E/M sensor. The induced voltage signal collected based on the yoke-type E/M sensor was applied to the GRU algorithm. As a result of applying the GRU model to the induced voltage signal data according to the change in tension force of the yoke-type E/M sensor, it was proven that high-accuracy tension force estimation is possible. These results suggest new possibilities for structural health monitoring technology through nondestructive testing. This study presents the applicability of artificial-intelligence-based techniques in nondestructive measurements of tension members for the health monitoring of structures.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 10","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10659109/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This letter proposes a method to the estimation of tension force in tension members using the grated recurrent unit (GRU) algorithm. In this letter, a yoke-type elasto-magnetic (E/M) sensor was developed based on numerical ANSYS Maxwell simulations to enhance the applicability through the structural improvement of the existing solenoid-type magnetized E/M sensor. The induced voltage signal collected based on the yoke-type E/M sensor was applied to the GRU algorithm. As a result of applying the GRU model to the induced voltage signal data according to the change in tension force of the yoke-type E/M sensor, it was proven that high-accuracy tension force estimation is possible. These results suggest new possibilities for structural health monitoring technology through nondestructive testing. This study presents the applicability of artificial-intelligence-based techniques in nondestructive measurements of tension members for the health monitoring of structures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于磁轭型弹性磁传感器数据的 GRU 算法估算受拉构件的拉力
本文提出了一种利用格栅递归单元(GRU)算法估算拉伸构件拉力的方法。本文在 ANSYS Maxwell 数值模拟的基础上开发了一种轭型弹性磁(E/M)传感器,通过对现有电磁铁型磁化 E/M 传感器的结构改进来提高其适用性。基于磁轭型 E/M 传感器采集的感应电压信号被应用于 GRU 算法。根据轭型 E/M 传感器张力的变化,将 GRU 模型应用于感应电压信号数据,结果证明可以进行高精度的张力估算。这些结果为通过无损检测进行结构健康监测技术提供了新的可能性。本研究介绍了基于人工智能的拉力构件无损测量技术在结构健康监测中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
期刊最新文献
Significance of CLPSO-Based Dataset in Self-Supervised Lightweight ANN for Estimating Highly Intelligible Microphone Sensor Location Development of Microwave Imaging System Using UWB Antenna Array for Inhomogeneity Detection in Human Brain Phantoms Quartz Crystal Microbalance-Tag Apparatus for Wireless Mass Sensing Applications An Efficient Linearizing Demodulator Interface for LVDT RespTrack-Net: Respiration Parameters Tracking From PPG Signal Using Deep Learning Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1