{"title":"Global sensitivity and domain-selective testing for functional-valued responses: An application to climate economy models","authors":"Matteo Fontana, Massimo Tavoni, Simone Vantini","doi":"10.1002/env.2866","DOIUrl":null,"url":null,"abstract":"<p>Understanding the dynamics and evolution of climate change and associated uncertainties is key for designing robust policy actions. Computer models are key tools in this scientific effort, which have now reached a high level of sophistication and complexity. Model auditing is needed in order to better understand their results, and to deal with the fact that such models are increasingly opaque with respect to their inner workings. Current techniques such as Global Sensitivity Analysis (GSA) are limited to dealing either with multivariate outputs, stochastic ones, or finite-change inputs. This limits their applicability to time-varying variables such as future pathways of greenhouse gases. To provide additional semantics in the analysis of a model ensemble, we provide an extension of GSA methodologies tackling the case of stochastic functional outputs with finite change inputs. To deal with finite change inputs and functional outputs, we propose an extension of currently available GSA methodologies while we deal with the stochastic part by introducing a novel, domain-selective inferential technique for sensitivity indices. Our method is explored via a simulation study that shows its robustness and efficacy in detecting sensitivity patterns. We apply it to real-world data, where its capabilities can provide to practitioners and policymakers additional information about the time dynamics of sensitivity patterns, as well as information about robustness.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"35 6","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2866","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2866","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the dynamics and evolution of climate change and associated uncertainties is key for designing robust policy actions. Computer models are key tools in this scientific effort, which have now reached a high level of sophistication and complexity. Model auditing is needed in order to better understand their results, and to deal with the fact that such models are increasingly opaque with respect to their inner workings. Current techniques such as Global Sensitivity Analysis (GSA) are limited to dealing either with multivariate outputs, stochastic ones, or finite-change inputs. This limits their applicability to time-varying variables such as future pathways of greenhouse gases. To provide additional semantics in the analysis of a model ensemble, we provide an extension of GSA methodologies tackling the case of stochastic functional outputs with finite change inputs. To deal with finite change inputs and functional outputs, we propose an extension of currently available GSA methodologies while we deal with the stochastic part by introducing a novel, domain-selective inferential technique for sensitivity indices. Our method is explored via a simulation study that shows its robustness and efficacy in detecting sensitivity patterns. We apply it to real-world data, where its capabilities can provide to practitioners and policymakers additional information about the time dynamics of sensitivity patterns, as well as information about robustness.
期刊介绍:
Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences.
The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.