首页 > 最新文献

Environmetrics最新文献

英文 中文
Bias correction of daily precipitation from climate models, using the Q-GAM method 利用 Q-GAM 方法对气候模型的日降水量进行偏差校正
IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-25 DOI: 10.1002/env.2881
Georgia Lazoglou, Theo Economou, Christina Anagnostopoulou, Anna Tzyrkalli, George Zittis, Jos Lelieveld

Climate models are useful tools for analyzing historical and projecting future climate conditions. However, the model results tend to differ systematically from observations, particularly for parameters with complex spatial and temporal distributions such as precipitation. A combination of quantile mapping and generalized additive models (GAMs) is presented and proposed as a new method (Q-GAM) for the bias correction of daily precipitation. Q-GAM is demonstrated by using data from five European stations with different climate characteristics. For each station, the closest continental grid point of a EURO-CORDEX climate model was selected for bias correction. A bootstrapping experiment is presented with over 1000 repetitions of randomly splitting the historical period 1981 to 2005 into a calibration and evaluation period. The results for all stations reveal that Q-GAM is a straightforward, accurate and computationally efficient method for the bias correction of precipitation. In particular, the method improves the frequency of dry days and the total annual rainfall amount. This outcome is robust across stations with varying climate characteristics and also to the choice of calibration and evaluation periods. Similar results are also obtained for other precipitation characteristics such as the 0.9 and 0.95 quantiles.

气候模式是分析历史和预测未来气候条件的有用工具。然而,模式结果往往与观测结果存在系统性差异,特别是对于降水等具有复杂时空分布的参数。本文介绍了量子绘图和广义加法模型(GAMs)的结合,并提出了一种新方法(Q-GAM),用于日降水量的偏差校正。通过使用具有不同气候特征的五个欧洲站点的数据,对 Q-GAM 进行了演示。每个站点都选择了 EURO-CORDEX 气候模式中最接近的大陆网格点进行偏差校正。对 1981 年至 2005 年这一历史时期随机分成校准期和评估期,进行了超过 1000 次重复的引导实验。所有站点的结果表明,Q-GAM 是一种直接、准确、计算效率高的降水偏差校正方法。特别是,该方法提高了干旱日的频率和年降雨总量。这一结果对不同气候特征的站点以及校准和评估期的选择都是稳健的。对于其他降水特征,如 0.9 和 0.95 量值,也得到了类似的结果。
{"title":"Bias correction of daily precipitation from climate models, using the Q-GAM method","authors":"Georgia Lazoglou,&nbsp;Theo Economou,&nbsp;Christina Anagnostopoulou,&nbsp;Anna Tzyrkalli,&nbsp;George Zittis,&nbsp;Jos Lelieveld","doi":"10.1002/env.2881","DOIUrl":"https://doi.org/10.1002/env.2881","url":null,"abstract":"<p>Climate models are useful tools for analyzing historical and projecting future climate conditions. However, the model results tend to differ systematically from observations, particularly for parameters with complex spatial and temporal distributions such as precipitation. A combination of quantile mapping and generalized additive models (GAMs) is presented and proposed as a new method (Q-GAM) for the bias correction of daily precipitation. Q-GAM is demonstrated by using data from five European stations with different climate characteristics. For each station, the closest continental grid point of a EURO-CORDEX climate model was selected for bias correction. A bootstrapping experiment is presented with over 1000 repetitions of randomly splitting the historical period 1981 to 2005 into a calibration and evaluation period. The results for all stations reveal that Q-GAM is a straightforward, accurate and computationally efficient method for the bias correction of precipitation. In particular, the method improves the frequency of dry days and the total annual rainfall amount. This outcome is robust across stations with varying climate characteristics and also to the choice of calibration and evaluation periods. Similar results are also obtained for other precipitation characteristics such as the 0.9 and 0.95 quantiles.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"35 7","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2881","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A hierarchical constrained density regression model for predicting cluster-level dose-response 用于预测群集级剂量反应的分层约束密度回归模型
IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-26 DOI: 10.1002/env.2880
Michael L. Pennell, Matthew W. Wheeler, Scott S. Auerbach

With the advent of new alternative methods for rapid toxicity screening of chemicals comes the need for new statistical methodologies which appropriately synthesize the large amount of data collected. For example, transcriptomic assays can be used to assess the impact of a chemical on thousands of genes, but current approaches to analyzing the data treat each gene separately and do not allow sharing of information among genes within pathways. Furthermore, the methods employed are fully parametric and do not account for changes in distribution shape that may occur at high exposure levels. To address the limitations of these methods, we propose Constrained Logistic Density Regression (COLDER) to model expression data from different genes simultaneously. Under COLDER, the dose-response function for each gene is assigned a prior via a discrete logistic stick-breaking process (LSBP) whose weights depend on gene-level characteristics (e.g., pathway membership) and atoms consist of different dose-response functions subject to a shape constraint that ensures biological plausibility. The posterior distribution for the benchmark dose among genes within the same pathways can be estimated directly from the model, which is another advantage over current methods. The ability of COLDER to predict gene-level dose-response is evaluated in a simulation study and the method is illustrated with data from a National Toxicology Program study of Aflatoxin B1.

随着用于快速筛选化学品毒性的新替代方法的出现,我们需要新的统计方法来适当综合收集到的大量数据。例如,转录组测定可用于评估化学品对数千个基因的影响,但目前的数据分析方法是将每个基因分开处理,不允许在通路中共享基因间的信息。此外,所采用的方法都是完全参数化的,没有考虑到高暴露水平下可能出现的分布形状变化。为了解决这些方法的局限性,我们提出了约束逻辑密度回归(COLDER)方法,以同时对不同基因的表达数据进行建模。在 COLDER 中,每个基因的剂量-反应函数都通过离散逻辑断棒过程(LSBP)分配一个先验值,该先验值的权重取决于基因水平特征(如通路成员资格),原子由不同的剂量-反应函数组成,并受到确保生物合理性的形状约束。同一通路中基因间基准剂量的后验分布可直接从模型中估算,这是目前方法的另一个优势。COLDER 预测基因水平剂量反应的能力在一项模拟研究中进行了评估,并用国家毒理学计划对黄曲霉毒素 B1 的研究数据对该方法进行了说明。
{"title":"A hierarchical constrained density regression model for predicting cluster-level dose-response","authors":"Michael L. Pennell,&nbsp;Matthew W. Wheeler,&nbsp;Scott S. Auerbach","doi":"10.1002/env.2880","DOIUrl":"10.1002/env.2880","url":null,"abstract":"<p>With the advent of new alternative methods for rapid toxicity screening of chemicals comes the need for new statistical methodologies which appropriately synthesize the large amount of data collected. For example, transcriptomic assays can be used to assess the impact of a chemical on thousands of genes, but current approaches to analyzing the data treat each gene separately and do not allow sharing of information among genes within pathways. Furthermore, the methods employed are fully parametric and do not account for changes in distribution shape that may occur at high exposure levels. To address the limitations of these methods, we propose Constrained Logistic Density Regression (COLDER) to model expression data from different genes simultaneously. Under COLDER, the dose-response function for each gene is assigned a prior via a discrete logistic stick-breaking process (LSBP) whose weights depend on gene-level characteristics (e.g., pathway membership) and atoms consist of different dose-response functions subject to a shape constraint that ensures biological plausibility. The posterior distribution for the benchmark dose among genes within the same pathways can be estimated directly from the model, which is another advantage over current methods. The ability of COLDER to predict gene-level dose-response is evaluated in a simulation study and the method is illustrated with data from a National Toxicology Program study of Aflatoxin B1.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"35 7","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2880","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Under the mantra: ‘Make use of colorblind friendly graphs’ 以 "使用色盲友好图表 "为口号
IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-20 DOI: 10.1002/env.2877
Duccio Rocchini, Ludovico Chieffallo, Elisa Thouverai, Rossella D'Introno, Francesca Dagostin, Emma Donini, Giles Foody, Simon Garnier, Guilherme G. Mazzochini, Vitezslav Moudry, Bob Rudis, Petra Simova, Michele Torresani, Jakub Nowosad

Colorblindness is a genetic condition that affects a person's ability to accurately perceive colors. Several papers still exist making use of rainbow colors palette to show output. In such cases, for colorblind people such graphs are meaningless. In this paper, we propose good practices and coding solutions developed in the R Free and Open Source Software to (i) simulate colorblindness, (ii) develop colorblind friendly color palettes and (iii) provide the tools for converting a noncolorblind friendly graph into a new image with improved colors.

色盲是一种遗传病,会影响人准确感知颜色的能力。目前仍有一些论文使用彩虹色调色板来显示输出结果。在这种情况下,对于色盲者来说,这些图表毫无意义。在本文中,我们提出了在 R 免费开源软件中开发的良好实践和编码解决方案,以便:(i) 模拟色盲;(ii) 开发色盲友好型调色板;(iii) 提供工具,将非色盲友好型图形转换为具有改进色彩的新图像。
{"title":"Under the mantra: ‘Make use of colorblind friendly graphs’","authors":"Duccio Rocchini,&nbsp;Ludovico Chieffallo,&nbsp;Elisa Thouverai,&nbsp;Rossella D'Introno,&nbsp;Francesca Dagostin,&nbsp;Emma Donini,&nbsp;Giles Foody,&nbsp;Simon Garnier,&nbsp;Guilherme G. Mazzochini,&nbsp;Vitezslav Moudry,&nbsp;Bob Rudis,&nbsp;Petra Simova,&nbsp;Michele Torresani,&nbsp;Jakub Nowosad","doi":"10.1002/env.2877","DOIUrl":"https://doi.org/10.1002/env.2877","url":null,"abstract":"<p>Colorblindness is a genetic condition that affects a person's ability to accurately perceive colors. Several papers still exist making use of rainbow colors palette to show output. In such cases, for colorblind people such graphs are meaningless. In this paper, we propose good practices and coding solutions developed in the R Free and Open Source Software to (i) simulate colorblindness, (ii) develop colorblind friendly color palettes and (iii) provide the tools for converting a noncolorblind friendly graph into a new image with improved colors.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"35 6","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2877","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A flexible and interpretable spatial covariance model for data on graphs 灵活、可解释的图形数据空间协方差模型
IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-17 DOI: 10.1002/env.2879
Michael F. Christensen, Peter D. Hoff

Spatial models for areal data are often constructed such that all pairs of adjacent regions are assumed to have near-identical spatial autocorrelation. In practice, data can exhibit dependence structures more complicated than can be represented under this assumption. In this article, we develop a new model for spatially correlated data observed on graphs, which can flexibly represented many types of spatial dependence patterns while retaining aspects of the original graph geometry. Our method implies an embedding of the graph into Euclidean space wherein covariance can be modeled using traditional covariance functions, such as those from the Matérn family. We parameterize our model using a class of graph metrics compatible with such covariance functions, and which characterize distance in terms of network flow, a property useful for understanding proximity in many ecological settings. By estimating the parameters underlying these metrics, we recover the “intrinsic distances” between graph nodes, which assist in the interpretation of the estimated covariance and allow us to better understand the relationship between the observed process and spatial domain. We compare our model to existing methods for spatially dependent graph data, primarily conditional autoregressive models and their variants, and illustrate advantages of our method over traditional approaches. We fit our model to bird abundance data for several species in North Carolina, and show how it provides insight into the interactions between species-specific spatial distributions and geography.

通常构建的等值数据空间模型是假设所有相邻区域对都具有近乎相同的空间自相关性。实际上,数据可能表现出比这一假设更复杂的依赖结构。在本文中,我们为在图形上观察到的空间相关数据建立了一个新模型,它可以灵活地表示多种类型的空间依赖模式,同时保留了原始图形几何的某些方面。我们的方法意味着将图嵌入欧几里得空间,其中的协方差可以使用传统的协方差函数建模,例如马特恩函数族中的协方差函数。我们使用一类与此类协方差函数兼容的图度量来对模型进行参数化,这些度量以网络流来描述距离,这一特性有助于理解许多生态环境中的邻近性。通过估计这些度量的基本参数,我们可以恢复图节点之间的 "固有距离",这有助于解释估计的协方差,使我们能够更好地理解观察到的过程与空间域之间的关系。我们将我们的模型与现有的空间依赖图数据方法(主要是条件自回归模型及其变体)进行了比较,并说明了我们的方法与传统方法相比的优势。我们将我们的模型拟合到北卡罗来纳州多个物种的鸟类丰度数据中,并展示了该模型如何深入揭示物种特定空间分布与地理之间的相互作用。
{"title":"A flexible and interpretable spatial covariance model for data on graphs","authors":"Michael F. Christensen,&nbsp;Peter D. Hoff","doi":"10.1002/env.2879","DOIUrl":"10.1002/env.2879","url":null,"abstract":"<p>Spatial models for areal data are often constructed such that all pairs of adjacent regions are assumed to have near-identical spatial autocorrelation. In practice, data can exhibit dependence structures more complicated than can be represented under this assumption. In this article, we develop a new model for spatially correlated data observed on graphs, which can flexibly represented many types of spatial dependence patterns while retaining aspects of the original graph geometry. Our method implies an embedding of the graph into Euclidean space wherein covariance can be modeled using traditional covariance functions, such as those from the Matérn family. We parameterize our model using a class of graph metrics compatible with such covariance functions, and which characterize distance in terms of network flow, a property useful for understanding proximity in many ecological settings. By estimating the parameters underlying these metrics, we recover the “intrinsic distances” between graph nodes, which assist in the interpretation of the estimated covariance and allow us to better understand the relationship between the observed process and spatial domain. We compare our model to existing methods for spatially dependent graph data, primarily conditional autoregressive models and their variants, and illustrate advantages of our method over traditional approaches. We fit our model to bird abundance data for several species in North Carolina, and show how it provides insight into the interactions between species-specific spatial distributions and geography.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"35 7","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How to find the best sampling design: A new measure of spatial balance 如何找到最佳抽样设计:空间平衡的新衡量标准
IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-13 DOI: 10.1002/env.2878
Wilmer Prentius, Anton Grafström

We present a novel measure to assess the spatial balance of a sample by utilizing the balancing equation, which captures the balance between the sample units and their neighbours. Spatially balanced samples are desirable as they may reduce the variance of an estimator of a population parameter. If the auxiliary variables we employ to spread the sample possess high explanatory power for the variable(s) of interest, the resulting reduction in variance can be substantial. An advantageous aspect of using auxiliary variables is that their availability is not contingent upon the sampling effort. Therefore, we can assess and compare sampling designs before committing resources to full-scale surveys. By comparing the proposed measure with commonly used measures of spatial balance, we ascertain that our measure consistently yields meaningful insights regarding the spatial balance of samples. Consequently, our measure can effectively differentiate between various designs when planning a survey, evaluate the potential gains from replacing an existing sample, and determine which non-responding units would contribute the most to enhancing the set of responding units.

我们提出了一种新的方法,利用平衡方程来评估样本的空间平衡,该方程可捕捉样本单元与其邻近单元之间的平衡。空间平衡的样本是理想的,因为它们可以减少人口参数估计的方差。如果我们用来分散样本的辅助变量对相关变量具有很强的解释能力,那么由此带来的方差减少可能会非常可观。使用辅助变量的一个好处是,它们的可用性并不取决于抽样工作。因此,在投入资源进行全面调查之前,我们可以对抽样设计进行评估和比较。通过将所提出的测量方法与常用的空间平衡测量方法进行比较,我们可以确定,我们的测量方法始终能就样本的空间平衡提供有意义的见解。因此,在规划调查时,我们的测量方法可以有效区分各种设计,评估替换现有样本的潜在收益,并确定哪些非响应单位最有助于增强响应单位集。
{"title":"How to find the best sampling design: A new measure of spatial balance","authors":"Wilmer Prentius,&nbsp;Anton Grafström","doi":"10.1002/env.2878","DOIUrl":"10.1002/env.2878","url":null,"abstract":"<p>We present a novel measure to assess the spatial balance of a sample by utilizing the balancing equation, which captures the balance between the sample units and their neighbours. Spatially balanced samples are desirable as they may reduce the variance of an estimator of a population parameter. If the auxiliary variables we employ to spread the sample possess high explanatory power for the variable(s) of interest, the resulting reduction in variance can be substantial. An advantageous aspect of using auxiliary variables is that their availability is not contingent upon the sampling effort. Therefore, we can assess and compare sampling designs before committing resources to full-scale surveys. By comparing the proposed measure with commonly used measures of spatial balance, we ascertain that our measure consistently yields meaningful insights regarding the spatial balance of samples. Consequently, our measure can effectively differentiate between various designs when planning a survey, evaluate the potential gains from replacing an existing sample, and determine which non-responding units would contribute the most to enhancing the set of responding units.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"35 7","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2878","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anthropogenic and meteorological effects on the counts and sizes of moderate and extreme wildfires 人类活动和气象对中度和极端野火数量和规模的影响
IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-06 DOI: 10.1002/env.2873
Elizabeth S. Lawler, Benjamin A. Shaby

The growing frequency and size of wildfires across the US necessitates accurate quantitative assessment of evolving wildfire behavior to predict risk from future extreme wildfires. We build a joint model of wildfire counts and burned areas, regressing key model parameters on climate and demographic covariates. We use extended generalized Pareto distributions to model the full distribution of burned areas, capturing both moderate and extreme sizes, while leveraging extreme value theory to focus particularly on the right tail. We model wildfire counts with a zero-inflated negative binomial model, and join the wildfire counts and burned areas sub-models using a temporally-varying shared random effect. Our model successfully captures the trends of wildfire counts and burned areas. By investigating the predictive power of different sets of covariates, we find that fire indices are better predictors of wildfire burned area behavior than individual climate covariates, whereas climate covariates are influential drivers of wildfire occurrence behavior.

美国各地野火发生的频率和规模越来越大,因此有必要对不断演变的野火行为进行准确的定量评估,以预测未来极端野火的风险。我们建立了一个野火数量和烧毁面积的联合模型,将模型的关键参数与气候和人口协变量进行回归。我们使用扩展的广义帕累托分布来模拟燃烧面积的完整分布,同时捕捉中等和极端面积,并利用极值理论特别关注右尾部。我们使用零膨胀负二项模型对野火数量进行建模,并使用随时间变化的共享随机效应将野火数量和烧毁面积子模型连接起来。我们的模型成功地捕捉到了野火次数和烧毁面积的变化趋势。通过研究不同协变量的预测能力,我们发现火灾指数比单个气候协变量更能预测野火烧毁面积行为,而气候协变量则是野火发生行为的影响因素。
{"title":"Anthropogenic and meteorological effects on the counts and sizes of moderate and extreme wildfires","authors":"Elizabeth S. Lawler,&nbsp;Benjamin A. Shaby","doi":"10.1002/env.2873","DOIUrl":"10.1002/env.2873","url":null,"abstract":"<p>The growing frequency and size of wildfires across the US necessitates accurate quantitative assessment of evolving wildfire behavior to predict risk from future extreme wildfires. We build a joint model of wildfire counts and burned areas, regressing key model parameters on climate and demographic covariates. We use extended generalized Pareto distributions to model the full distribution of burned areas, capturing both moderate and extreme sizes, while leveraging extreme value theory to focus particularly on the right tail. We model wildfire counts with a zero-inflated negative binomial model, and join the wildfire counts and burned areas sub-models using a temporally-varying shared random effect. Our model successfully captures the trends of wildfire counts and burned areas. By investigating the predictive power of different sets of covariates, we find that fire indices are better predictors of wildfire burned area behavior than individual climate covariates, whereas climate covariates are influential drivers of wildfire occurrence behavior.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"35 7","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2873","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Marginal inference for hierarchical generalized linear mixed models with patterned covariance matrices using the Laplace approximation 使用拉普拉斯近似法对具有模式化协方差矩阵的分层广义线性混合模型进行边际推断
IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Pub Date : 2024-07-22 DOI: 10.1002/env.2872
Jay M. Ver Hoef, Eryn Blagg, Michael Dumelle, Philip M. Dixon, Dale L. Zimmerman, Paul B. Conn

We develop hierarchical models and methods in a fully parametric approach to generalized linear mixed models for any patterned covariance matrix. The Laplace approximation is used to marginally estimate covariance parameters by integrating over all fixed and latent random effects. The Laplace approximation relies on Newton–Raphson updates, which also leads to predictions for the latent random effects. We develop methodology for complete marginal inference, from estimating covariance parameters and fixed effects to making predictions for unobserved data. The marginal likelihood is developed for six distributions that are often used for binary, count, and positive continuous data, and our framework is easily extended to other distributions. We compare our methods to fully Bayesian methods, automatic differentiation, and integrated nested Laplace approximations (INLA) for bias, mean-squared (prediction) error, and interval coverage, and all methods yield very similar results. However, our methods are much faster than Bayesian methods, and more general than INLA. Examples with binary and proportional data, count data, and positive-continuous data are used to illustrate all six distributions with a variety of patterned covariance structures that include spatial models (both geostatistical and areal models), time series models, and mixtures with typical random intercepts based on grouping.

我们针对任何模式的协方差矩阵,以完全参数化的方法开发了广义线性混合模型的分层模型和方法。通过对所有固定效应和潜在随机效应进行积分,拉普拉斯近似法被用来对协方差参数进行边际估计。拉普拉斯近似依赖于牛顿-拉斐森更新,这也会导致对潜在随机效应的预测。我们开发了完整的边际推断方法,从估计协方差参数和固定效应到预测未观察数据。边际似然法是针对常用于二进制、计数和正连续数据的六种分布而开发的,我们的框架很容易扩展到其他分布。在偏差、均方(预测)误差和区间覆盖方面,我们将我们的方法与完全贝叶斯方法、自动微分法和集成嵌套拉普拉斯近似法(INLA)进行了比较,所有方法都得出了非常相似的结果。不过,我们的方法比贝叶斯方法更快,比 INLA 更通用。以二元数据、比例数据、计数数据和正连续数据为例,说明了所有六种分布的各种模式协方差结构,其中包括空间模型(地理统计模型和areal模型)、时间序列模型和基于分组的典型随机截距混合物。
{"title":"Marginal inference for hierarchical generalized linear mixed models with patterned covariance matrices using the Laplace approximation","authors":"Jay M. Ver Hoef,&nbsp;Eryn Blagg,&nbsp;Michael Dumelle,&nbsp;Philip M. Dixon,&nbsp;Dale L. Zimmerman,&nbsp;Paul B. Conn","doi":"10.1002/env.2872","DOIUrl":"10.1002/env.2872","url":null,"abstract":"<p>We develop hierarchical models and methods in a fully parametric approach to generalized linear mixed models for any patterned covariance matrix. The Laplace approximation is used to marginally estimate covariance parameters by integrating over all fixed and latent random effects. The Laplace approximation relies on Newton–Raphson updates, which also leads to predictions for the latent random effects. We develop methodology for complete marginal inference, from estimating covariance parameters and fixed effects to making predictions for unobserved data. The marginal likelihood is developed for six distributions that are often used for binary, count, and positive continuous data, and our framework is easily extended to other distributions. We compare our methods to fully Bayesian methods, automatic differentiation, and integrated nested Laplace approximations (INLA) for bias, mean-squared (prediction) error, and interval coverage, and all methods yield very similar results. However, our methods are much faster than Bayesian methods, and more general than INLA. Examples with binary and proportional data, count data, and positive-continuous data are used to illustrate all six distributions with a variety of patterned covariance structures that include spatial models (both geostatistical and areal models), time series models, and mixtures with typical random intercepts based on grouping.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"35 7","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2872","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating the spatial distribution of the white shark in the Mediterranean Sea via an integrated species distribution model accounting for physical barriers 通过考虑物理障碍的综合物种分布模型估算地中海白鲨的空间分布情况
IF 1.7 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Pub Date : 2024-07-09 DOI: 10.1002/env.2876
Greta Panunzi, Stefano Moro, Isa Marques, Sara Martino, Francesco Colloca, Francesco Ferretti, Giovanna Jona Lasinio
Conserving oceanic apex predators, such as sharks, is of utmost importance. However, scant abundance and distribution data often challenge understanding the population status of many threatened species. Occurrence records are often scarce and opportunistic, and fieldwork aimed to retrieve additional data is expensive and prone to failure. Integrating various data sources becomes crucial to developing species distribution models for informed sampling and conservation purposes. The white shark, for example, is a rare but persistent inhabitant of the Mediterranean Sea. Here, it is considered Critically Endangered by the IUCN, while population abundance, distribution patterns, and habitat use are still poorly known. This study uses available occurrence records from 1985 to 2021 from diverse sources to construct a spatial log‐Gaussian Cox process, with data‐source specific detection functions and thinning, and accounting for physical barriers. This model estimates white shark presence intensity alongside uncertainty through a Bayesian approach with Integrated Nested Laplace Approximation (INLA) and the inlabru R package. For the first time, we projected species occurrence hot spots and landscapes of relative abundance (continuous measure of animal density in space) throughout the Mediterranean Sea. This approach can be used with other rare species for which presence‐only data from different sources are available.
保护鲨鱼等海洋顶级掠食者至关重要。然而,稀少的丰度和分布数据往往对了解许多濒危物种的种群状况构成挑战。出现记录通常很少,而且是机会性的,而旨在获取更多数据的野外工作成本高昂且容易失败。整合各种数据来源对于建立物种分布模型以实现知情取样和保护目的至关重要。例如,白鲨是地中海稀有但持久的居民。在这里,白鲨被世界自然保护联盟(IUCN)认定为极度濒危物种,但对其种群数量、分布模式和栖息地使用情况仍然知之甚少。本研究利用从 1985 年到 2021 年不同来源的出现记录构建了一个空间对数-高斯 Cox 过程,该过程具有数据源特定的检测功能和稀疏性,并考虑了物理障碍。该模型通过使用集成嵌套拉普拉斯近似法(INLA)和 inlabru R 软件包的贝叶斯方法来估计白鲨的存在强度和不确定性。我们首次预测了整个地中海的物种出现热点和相对丰度景观(空间中动物密度的连续度量)。这种方法可用于其他稀有物种,因为它们可以从不同来源获得仅存在的数据。
{"title":"Estimating the spatial distribution of the white shark in the Mediterranean Sea via an integrated species distribution model accounting for physical barriers","authors":"Greta Panunzi, Stefano Moro, Isa Marques, Sara Martino, Francesco Colloca, Francesco Ferretti, Giovanna Jona Lasinio","doi":"10.1002/env.2876","DOIUrl":"https://doi.org/10.1002/env.2876","url":null,"abstract":"Conserving oceanic apex predators, such as sharks, is of utmost importance. However, scant abundance and distribution data often challenge understanding the population status of many threatened species. Occurrence records are often scarce and opportunistic, and fieldwork aimed to retrieve additional data is expensive and prone to failure. Integrating various data sources becomes crucial to developing species distribution models for informed sampling and conservation purposes. The white shark, for example, is a rare but persistent inhabitant of the Mediterranean Sea. Here, it is considered <jats:italic>Critically Endangered</jats:italic> by the IUCN, while population abundance, distribution patterns, and habitat use are still poorly known. This study uses available occurrence records from 1985 to 2021 from diverse sources to construct a spatial log‐Gaussian Cox process, with data‐source specific detection functions and thinning, and accounting for physical barriers. This model estimates white shark presence intensity alongside uncertainty through a Bayesian approach with Integrated Nested Laplace Approximation (INLA) and the <jats:styled-content>inlabru</jats:styled-content> R package. For the first time, we projected species occurrence hot spots and landscapes of relative abundance (continuous measure of animal density in space) throughout the Mediterranean Sea. This approach can be used with other rare species for which presence‐only data from different sources are available.","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"88 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141575753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing predictability of environmental time series with statistical and machine learning models 利用统计和机器学习模型评估环境时间序列的可预测性
IF 1.7 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Pub Date : 2024-07-05 DOI: 10.1002/env.2864
Matthew Bonas, Abhirup Datta, Christopher K. Wikle, Edward L. Boone, Faten S. Alamri, Bhava Vyasa Hari, Indulekha Kavila, Susan J. Simmons, Shannon M. Jarvis, Wesley S. Burr, Daniel E. Pagendam, Won Chang, Stefano Castruccio
The ever increasing popularity of machine learning methods in virtually all areas of science, engineering and beyond is poised to put established statistical modeling approaches into question. Environmental statistics is no exception, as popular constructs such as neural networks and decision trees are now routinely used to provide forecasts of physical processes ranging from air pollution to meteorology. This presents both challenges and opportunities to the statistical community, which could contribute to the machine learning literature with a model‐based approach with formal uncertainty quantification. Should, however, classical statistical methodologies be discarded altogether in environmental statistics, and should our contribution be focused on formalizing machine learning constructs? This work aims at providing some answers to this thought‐provoking question with two time series case studies where selected models from both the statistical and machine learning literature are compared in terms of forecasting skills, uncertainty quantification and computational time. Relative merits of both class of approaches are discussed, and broad open questions are formulated as a baseline for a discussion on the topic.
机器学习方法在科学、工程及其他几乎所有领域的应用日益普及,这将使既定的统计建模方法受到质疑。环境统计也不例外,因为神经网络和决策树等流行的结构现在已被常规用于提供从空气污染到气象学等物理过程的预测。这给统计界带来了挑战和机遇,统计界可以通过基于模型的方法和正式的不确定性量化,为机器学习文献做出贡献。然而,在环境统计中是否应该完全抛弃传统的统计方法,我们的贡献是否应该集中在机器学习构造的形式化上?这项工作旨在通过两个时间序列案例研究,从预测技能、不确定性量化和计算时间等方面对统计文献和机器学习文献中的选定模型进行比较,从而为这一发人深省的问题提供一些答案。讨论了这两类方法的相对优点,并提出了广泛的开放性问题,作为讨论该主题的基线。
{"title":"Assessing predictability of environmental time series with statistical and machine learning models","authors":"Matthew Bonas, Abhirup Datta, Christopher K. Wikle, Edward L. Boone, Faten S. Alamri, Bhava Vyasa Hari, Indulekha Kavila, Susan J. Simmons, Shannon M. Jarvis, Wesley S. Burr, Daniel E. Pagendam, Won Chang, Stefano Castruccio","doi":"10.1002/env.2864","DOIUrl":"https://doi.org/10.1002/env.2864","url":null,"abstract":"The ever increasing popularity of machine learning methods in virtually all areas of science, engineering and beyond is poised to put established statistical modeling approaches into question. Environmental statistics is no exception, as popular constructs such as neural networks and decision trees are now routinely used to provide forecasts of physical processes ranging from air pollution to meteorology. This presents both challenges and opportunities to the statistical community, which could contribute to the machine learning literature with a model‐based approach with formal uncertainty quantification. Should, however, classical statistical methodologies be discarded altogether in environmental statistics, and should our contribution be focused on formalizing machine learning constructs? This work aims at providing some answers to this thought‐provoking question with two time series case studies where selected models from both the statistical and machine learning literature are compared in terms of forecasting skills, uncertainty quantification and computational time. Relative merits of both class of approaches are discussed, and broad open questions are formulated as a baseline for a discussion on the topic.","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"371 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141575754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applying sequential adaptive strategies for sampling animal populations: An empirical study 在动物种群采样中应用顺序适应策略:实证研究
IF 1.7 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Pub Date : 2024-07-02 DOI: 10.1002/env.2870
Rosa M. Di Biase, Fulvia Mecatti
Traditional sampling methods may prove inadequate when dealing with spatially clustered populations or when studying rare events or traits that are not easily detectable across the target population. When both scenarios occur simultaneously, adaptive sampling strategies can represent a viable option to enhance the detectability of cases of interest. This paper delves into the application of a novel class of sequential adaptive sampling strategies to animal surveys. These strategies, originally proposed for human population tuberculosis prevalence surveys, allow oversampling of the rare interest variables while managing on‐field constraints. This ensures that the unfixed sample size, typical of adaptive sampling, does not compromise overall cost‐effectiveness. We explore a strategy within this class that integrates an adaptive component into a Poisson sequential selection. The aim is twofold: to intensify the detection of cases by exploiting the spatial clustering and to provide a flexible framework for managing logistics and budget constraints. To illustrate the strengths and weaknesses of this Poisson‐based sequential adaptive sampling strategy compared to traditional sampling methods, a simulation study was conducted on a blue‐winged teal population in Florida, USA. The results showcase the benefits of the proposed strategy and open avenues for future methodological and practical improvements.
在处理空间集群种群或研究不易在目标种群中检测到的罕见事件或特征时,传统的取样方法可能会被证明是不够的。当这两种情况同时出现时,自适应采样策略是一种可行的选择,可以提高感兴趣案例的可检测性。本文深入探讨了一类新型顺序适应性抽样策略在动物调查中的应用。这些策略最初是为人类结核病流行率调查而提出的,可以在管理现场限制因素的同时对罕见的相关变量进行超采样。这确保了适应性抽样中典型的不固定样本量不会影响总体成本效益。我们探讨了这一类别中的一种策略,它将自适应成分纳入了泊松序列选择。其目的有二:利用空间聚类加强病例检测,并为管理后勤和预算限制提供一个灵活的框架。为了说明这种基于泊松顺序的自适应采样策略与传统采样方法相比的优缺点,我们对美国佛罗里达州的蓝翅鸊鶿种群进行了模拟研究。研究结果展示了所提策略的优势,并为今后在方法和实践方面的改进开辟了道路。
{"title":"Applying sequential adaptive strategies for sampling animal populations: An empirical study","authors":"Rosa M. Di Biase, Fulvia Mecatti","doi":"10.1002/env.2870","DOIUrl":"https://doi.org/10.1002/env.2870","url":null,"abstract":"Traditional sampling methods may prove inadequate when dealing with spatially clustered populations or when studying rare events or traits that are not easily detectable across the target population. When both scenarios occur simultaneously, adaptive sampling strategies can represent a viable option to enhance the detectability of cases of interest. This paper delves into the application of a novel class of sequential adaptive sampling strategies to animal surveys. These strategies, originally proposed for human population tuberculosis prevalence surveys, allow oversampling of the rare interest variables while managing on‐field constraints. This ensures that the unfixed sample size, typical of adaptive sampling, does not compromise overall cost‐effectiveness. We explore a strategy within this class that integrates an adaptive component into a Poisson sequential selection. The aim is twofold: to intensify the detection of cases by exploiting the spatial clustering and to provide a flexible framework for managing logistics and budget constraints. To illustrate the strengths and weaknesses of this Poisson‐based sequential adaptive sampling strategy compared to traditional sampling methods, a simulation study was conducted on a blue‐winged teal population in Florida, USA. The results showcase the benefits of the proposed strategy and open avenues for future methodological and practical improvements.","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"125 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141515687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Environmetrics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1