Successive data injection in conditional quantum GAN applied to time series anomaly detection

IF 2.5 Q3 QUANTUM SCIENCE & TECHNOLOGY IET Quantum Communication Pub Date : 2024-02-27 DOI:10.1049/qtc2.12088
Benjamin Kalfon, Soumaya Cherkaoui, Jean-Frédéric Laprade, Ola Ahmad, Shengrui Wang
{"title":"Successive data injection in conditional quantum GAN applied to time series anomaly detection","authors":"Benjamin Kalfon,&nbsp;Soumaya Cherkaoui,&nbsp;Jean-Frédéric Laprade,&nbsp;Ola Ahmad,&nbsp;Shengrui Wang","doi":"10.1049/qtc2.12088","DOIUrl":null,"url":null,"abstract":"<p>Classical GAN architectures have shown interesting results for solving anomaly detection problems in general and for time series anomalies in particular, such as those arising in communication networks. In recent years, several quantum GAN (QGAN) architectures have been proposed in the literature. When detecting anomalies in time series using QGANs, huge challenges arise due to the limited number of qubits compared to the size of the data. To address these challenges, a new high-dimensional encoding approach, named Successive Data Injection (SuDaI) is proposed. In this approach, SuDaI explores a larger portion of the quantum state, compared to the conventional angle encoding method used predominantly in the literature. This is achieved through repeated data injections into the quantum state. SuDaI encoding allows the authors to adapt the QGAN for anomaly detection with network data of a much higher dimensionality than with the existing known QGANs implementations. In addition, SuDaI encoding applies to other types of high-dimensional time series and can be used in contexts beyond anomaly detection and QGANs, opening up therefore multiple fields of application.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12088","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Quantum Communication","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/qtc2.12088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Classical GAN architectures have shown interesting results for solving anomaly detection problems in general and for time series anomalies in particular, such as those arising in communication networks. In recent years, several quantum GAN (QGAN) architectures have been proposed in the literature. When detecting anomalies in time series using QGANs, huge challenges arise due to the limited number of qubits compared to the size of the data. To address these challenges, a new high-dimensional encoding approach, named Successive Data Injection (SuDaI) is proposed. In this approach, SuDaI explores a larger portion of the quantum state, compared to the conventional angle encoding method used predominantly in the literature. This is achieved through repeated data injections into the quantum state. SuDaI encoding allows the authors to adapt the QGAN for anomaly detection with network data of a much higher dimensionality than with the existing known QGANs implementations. In addition, SuDaI encoding applies to other types of high-dimensional time series and can be used in contexts beyond anomaly detection and QGANs, opening up therefore multiple fields of application.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
条件量子 GAN 中的连续数据注入应用于时间序列异常检测
经典的 GAN 架构在解决一般异常检测问题,特别是时间序列异常(如通信网络中出现的异常)方面取得了令人感兴趣的成果。近年来,文献中提出了几种量子 GAN(QGAN)架构。在使用 QGAN 检测时间序列异常时,由于量子比特的数量与数据的大小相比有限,因此面临着巨大的挑战。为了应对这些挑战,我们提出了一种新的高维编码方法,名为 "连续数据注入"(SuDaI)。在这种方法中,与文献中主要使用的传统角度编码方法相比,SuDaI 可以探索量子态的更大部分。这是通过向量子态重复注入数据实现的。与现有已知的 QGANs 实现方法相比,SuDaI 编码使作者能够利用维度更高的网络数据对 QGAN 进行异常检测。此外,SuDaI 编码还适用于其他类型的高维时间序列,可用于异常检测和 QGANs 之外的其他场合,因此开辟了多个应用领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
期刊最新文献
Starting a new era for quantum technologies: In conversation with the deputy EiCs and the managing editor Guest Editorial: Quantum industry: Applications in quantum communication (Quantum.Tech Europe 2022) Classical channel bandwidth requirements in continuous variable quantum key distribution systems Quantum machine learning with Qiskit: Evaluating regression accuracy and noise impact Advances in artificial intelligence and machine learning for quantum communication applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1