Ternary 3D/2D/3D direct dual Z-scheme MOF-on-MOF-derived -Fe2O3/g-C3N4/Fe-MOF photocatalyst for boosted sunlight-driven removal of metronidazole: Effect of co-existing ions, mechanistic insights, and water matrices
{"title":"Ternary 3D/2D/3D direct dual Z-scheme MOF-on-MOF-derived -Fe2O3/g-C3N4/Fe-MOF photocatalyst for boosted sunlight-driven removal of metronidazole: Effect of co-existing ions, mechanistic insights, and water matrices","authors":"Anindita Bhuyan, Md. Ahmaruzzaman","doi":"10.1039/d4en00610k","DOIUrl":null,"url":null,"abstract":"A direct solid ternary dual Z-scheme photocatalyst, 3D/2D/3D -Fe2O3/g-C3N4/Fe-MOF (FCM), was fabricated for efficient removal of metronidazole (MTZ) under sunlight irradiation. About 98.5 % of 25 mg/L MTZ was effectively degraded with a catalyst dosage of 20 mg/50mL under 90 min of sunlight irradiation. Moreover, a total organic carbon (TOC) removal of 78.5 % was achieved within the same duration under optimal conditions. The simultaneous transfer of photogenerated electron-hole pairs in the two Z-scheme pathways described here can significantly accelerate the charge separation and enhance ROS production. The effect of catalyst dose, initial MTZ concentration, inorganic cations (Na+, Mg2+, Ca2+, and Al3+), inorganic anions (Cl-, CO32-, NO3-, and SO42-), organic compounds (SDS, urea, HA, and acetone), and different water matrices on the degradation of MTZ by FCM was analyzed systematically. Furthermore, comprehending the spatial separation and transfer of photogenerated charge carriers, as well as the formation of ROS at the heterojunction interface, is critical for understanding photocatalytic degradation mechanisms. Consequently, a plausible MTZ breakdown route and charge transfer pathway were established based on the radical scavenging experiments, ESR and LCMS analysis. A high degradation efficiency of the dual Z-scheme MOF-on-MOF-derived 3D/2D/3D -Fe2O3/g-C3N4/Fe-MOF photocatalyst under all simulated experiments and different water matrices highlights its excellent photoactivity and establishes its potential use in visible-light-driven photocatalytic application in wastewater remediation.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d4en00610k","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A direct solid ternary dual Z-scheme photocatalyst, 3D/2D/3D -Fe2O3/g-C3N4/Fe-MOF (FCM), was fabricated for efficient removal of metronidazole (MTZ) under sunlight irradiation. About 98.5 % of 25 mg/L MTZ was effectively degraded with a catalyst dosage of 20 mg/50mL under 90 min of sunlight irradiation. Moreover, a total organic carbon (TOC) removal of 78.5 % was achieved within the same duration under optimal conditions. The simultaneous transfer of photogenerated electron-hole pairs in the two Z-scheme pathways described here can significantly accelerate the charge separation and enhance ROS production. The effect of catalyst dose, initial MTZ concentration, inorganic cations (Na+, Mg2+, Ca2+, and Al3+), inorganic anions (Cl-, CO32-, NO3-, and SO42-), organic compounds (SDS, urea, HA, and acetone), and different water matrices on the degradation of MTZ by FCM was analyzed systematically. Furthermore, comprehending the spatial separation and transfer of photogenerated charge carriers, as well as the formation of ROS at the heterojunction interface, is critical for understanding photocatalytic degradation mechanisms. Consequently, a plausible MTZ breakdown route and charge transfer pathway were established based on the radical scavenging experiments, ESR and LCMS analysis. A high degradation efficiency of the dual Z-scheme MOF-on-MOF-derived 3D/2D/3D -Fe2O3/g-C3N4/Fe-MOF photocatalyst under all simulated experiments and different water matrices highlights its excellent photoactivity and establishes its potential use in visible-light-driven photocatalytic application in wastewater remediation.
期刊介绍:
Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas:
Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
Nanomaterial interactions with biological systems and nanotoxicology
Environmental fate, reactivity, and transformations of nanoscale materials
Nanoscale processes in the environment
Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis