{"title":"Hidden magnetism and split off flat bands in the insulator metal transition in VO2","authors":"Xiuwen Zhang, Jia-Xin Xiong, Alex Zunger","doi":"10.1038/s41524-024-01382-8","DOIUrl":null,"url":null,"abstract":"<p>Transition metal <i>d</i>-electron oxides with an odd number of electrons per unit cell are expected to form metals with partially occupied energy bands, but exhibit in fact a range of behaviors, being either insulators, or metals, or having insulator-metal transitions. Traditional explanations involved predominantly electron-electron interactions in fixed structural symmetry. The present work focuses instead on the role of symmetry breaking local structural motifs. Viewing the previously observed V-V dimerization in VO<sub>2</sub> as a continuous knob, reveals in density functional calculations the splitting of an isolated flat band from the broad conduction band. This leads past a critical percent dimerization to the formation of the insulating phase while lowering the total energy. In VO<sub>2</sub> this transition is found to have a rather low energy barrier approaching the thermal energy at room temperature, suggesting energy-efficient switching in neuromorphic computing. Interestingly, sufficient V-V dimerization suppresses magnetism, leading to the nonmagnetic insulating state, whereas magnetism appears when dimerization is reduced, forming a metallic state. This study opens the way to design novel functional quantum materials with symmetry breaking-induced flat bands.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"5 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01382-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Transition metal d-electron oxides with an odd number of electrons per unit cell are expected to form metals with partially occupied energy bands, but exhibit in fact a range of behaviors, being either insulators, or metals, or having insulator-metal transitions. Traditional explanations involved predominantly electron-electron interactions in fixed structural symmetry. The present work focuses instead on the role of symmetry breaking local structural motifs. Viewing the previously observed V-V dimerization in VO2 as a continuous knob, reveals in density functional calculations the splitting of an isolated flat band from the broad conduction band. This leads past a critical percent dimerization to the formation of the insulating phase while lowering the total energy. In VO2 this transition is found to have a rather low energy barrier approaching the thermal energy at room temperature, suggesting energy-efficient switching in neuromorphic computing. Interestingly, sufficient V-V dimerization suppresses magnetism, leading to the nonmagnetic insulating state, whereas magnetism appears when dimerization is reduced, forming a metallic state. This study opens the way to design novel functional quantum materials with symmetry breaking-induced flat bands.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.