High-brightness transition metal-sensitized lanthanide near-infrared luminescent nanoparticles

IF 32.3 1区 物理与天体物理 Q1 OPTICS Nature Photonics Pub Date : 2024-09-13 DOI:10.1038/s41566-024-01517-9
Jiang Ming, Ying Chen, Han Miao, Yong Fan, Shangfeng Wang, Zihan Chen, Zhenhao Guo, Zhixiu Guo, Luyin Qi, Xusheng Wang, Baofeng Yun, Peng Pei, Haisheng He, Hongxin Zhang, Yun Tang, Dongyuan Zhao, Gary Ka-Leung Wong, Jean-Claude G. Bünzli, Fan Zhang
{"title":"High-brightness transition metal-sensitized lanthanide near-infrared luminescent nanoparticles","authors":"Jiang Ming, Ying Chen, Han Miao, Yong Fan, Shangfeng Wang, Zihan Chen, Zhenhao Guo, Zhixiu Guo, Luyin Qi, Xusheng Wang, Baofeng Yun, Peng Pei, Haisheng He, Hongxin Zhang, Yun Tang, Dongyuan Zhao, Gary Ka-Leung Wong, Jean-Claude G. Bünzli, Fan Zhang","doi":"10.1038/s41566-024-01517-9","DOIUrl":null,"url":null,"abstract":"<p>The demand for near-infrared (700–1,700 nm) materials in optical communications, laser sources and biological imaging applications has led to extensive research on lanthanide-doped nanoparticles, owing to their nanostructure modulation and interface property tunability. However, the low molar extinction coefficient of conventional lanthanide sensitizers limits the brightness of lanthanide near-infrared nanoparticles for applications in low-power excitation scenarios. Here we introduce Na<sub>3</sub>CrF<sub>6</sub>, a new crystalline nanoparticle that serves as both sensitizer and host for high-brightness near-infrared emission from lanthanide activators (Er<sup>3+</sup>, Tm<sup>3+</sup>, Yb<sup>3+</sup> or Nd<sup>3+</sup>). We demonstrate an increase in brightness of up to 370 times compared with the most intense conventional lanthanide-sensitized nanoparticles. This discovery is also validated for other lanthanide-doped nanoparticles sensitized with low-cost transition metals (Mn<sup>2+</sup> or Ni<sup>2+</sup>). Our transition metal-based nanoparticles represent a powerful toolbox to enable high signal-to-noise-ratio labelling and imaging with low-power excitation sources such as white light-emitting diode or persistent luminescence materials. This work paves the way for next-generation high-brightness near-infrared luminescence systems, suited for a wide range of low-illumination excitation applications.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":null,"pages":null},"PeriodicalIF":32.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41566-024-01517-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The demand for near-infrared (700–1,700 nm) materials in optical communications, laser sources and biological imaging applications has led to extensive research on lanthanide-doped nanoparticles, owing to their nanostructure modulation and interface property tunability. However, the low molar extinction coefficient of conventional lanthanide sensitizers limits the brightness of lanthanide near-infrared nanoparticles for applications in low-power excitation scenarios. Here we introduce Na3CrF6, a new crystalline nanoparticle that serves as both sensitizer and host for high-brightness near-infrared emission from lanthanide activators (Er3+, Tm3+, Yb3+ or Nd3+). We demonstrate an increase in brightness of up to 370 times compared with the most intense conventional lanthanide-sensitized nanoparticles. This discovery is also validated for other lanthanide-doped nanoparticles sensitized with low-cost transition metals (Mn2+ or Ni2+). Our transition metal-based nanoparticles represent a powerful toolbox to enable high signal-to-noise-ratio labelling and imaging with low-power excitation sources such as white light-emitting diode or persistent luminescence materials. This work paves the way for next-generation high-brightness near-infrared luminescence systems, suited for a wide range of low-illumination excitation applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高亮度过渡金属敏化镧系近红外发光纳米粒子
光通信、激光源和生物成像应用对近红外(700-1,700 纳米)材料的需求促使人们对掺杂镧系元素的纳米粒子进行了广泛的研究,因为它们具有纳米结构调制和界面特性可调性。然而,传统镧系元素敏化剂的摩尔消光系数较低,限制了镧系元素近红外纳米粒子在低功率激发场景中的应用亮度。在这里,我们介绍一种新型晶体纳米粒子 Na3CrF6,它既是镧系元素激活剂(Er3+、Tm3+、Yb3+ 或 Nd3+)的敏化剂,又是高亮度近红外发射的宿主。我们证明,与强度最高的传统镧系元素敏化纳米粒子相比,亮度最多可提高 370 倍。这一发现也验证了其他用低成本过渡金属(Mn2+ 或 Ni2+)敏化的掺杂镧系元素的纳米粒子。我们的过渡金属基纳米粒子是一个强大的工具箱,可利用低功率激发光源(如白光发光二极管或持久发光材料)实现高信噪比标记和成像。这项工作为下一代高亮度近红外发光系统铺平了道路,适合广泛的低照度激发应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Photonics
Nature Photonics 物理-光学
CiteScore
54.20
自引率
1.70%
发文量
158
审稿时长
12 months
期刊介绍: Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection. The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays. In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.
期刊最新文献
Regulating phase homogeneity by self-assembled molecules for enhanced efficiency and stability of inverted perovskite solar cells Resource-efficient photonic quantum computation with high-dimensional cluster states Positive-feedback organic light-emitting diodes and upconverters High-brightness transition metal-sensitized lanthanide near-infrared luminescent nanoparticles Brillouin laser-driven terahertz oscillator up to 3 THz with femtosecond-level timing jitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1