Research and Development to Reduce Impurity Production and Transport of the Impurities to the Target in Linear Plasma Devices Using Helicon Plasma Sources

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS IEEE Transactions on Plasma Science Pub Date : 2024-08-28 DOI:10.1109/TPS.2024.3442531
Juergen Rapp;Matthew J. Baldwin;Clyde J. Beers;Timothy S. Bigelow;John B. O. Caughman;Richard H. Goulding;Atul Kumar;Cornwall Lau
{"title":"Research and Development to Reduce Impurity Production and Transport of the Impurities to the Target in Linear Plasma Devices Using Helicon Plasma Sources","authors":"Juergen Rapp;Matthew J. Baldwin;Clyde J. Beers;Timothy S. Bigelow;John B. O. Caughman;Richard H. Goulding;Atul Kumar;Cornwall Lau","doi":"10.1109/TPS.2024.3442531","DOIUrl":null,"url":null,"abstract":"Linear plasma devices used to test plasma facing materials (PFMs) and components for fusion reactors are often suffering under the production of intrinsic impurities from the plasma source system. Most linear plasma devices use internal electrodes (hollow cathodes, reflex arc, or cascading arc), which typically are the source of the main impurities. The next-generation plasma generators use radio frequency (RF) plasma sources like helicons to avoid internal electrodes. However, high power operation of helicons has proven to result in impurity production due to the high rectified sheath voltages created. Depending on the plasma parameters and magnetic configuration, these impurities can be transported to the target and deposited there to unacceptable high levels. In this contribution, the experimental results from Proto-MPEX are summarized, and the conclusions of the impurity source physics are given. Methods to reduce the impurity production, the impurity transport, and the net deposition on the target are presented. These methods to reduce the impurity production include Faraday screens to reduce the sheath voltage drop, high-Z refractory coatings to reduce the erosion yield, and wall conditioning methods. Methods to reduce the impurity transport include changes in the magnetic configuration as well as electron heating to change axial and radial temperature profiles. Preliminary results on the effectiveness of some of these methods are presented.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"52 9","pages":"3885-3891"},"PeriodicalIF":1.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10654592/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

Linear plasma devices used to test plasma facing materials (PFMs) and components for fusion reactors are often suffering under the production of intrinsic impurities from the plasma source system. Most linear plasma devices use internal electrodes (hollow cathodes, reflex arc, or cascading arc), which typically are the source of the main impurities. The next-generation plasma generators use radio frequency (RF) plasma sources like helicons to avoid internal electrodes. However, high power operation of helicons has proven to result in impurity production due to the high rectified sheath voltages created. Depending on the plasma parameters and magnetic configuration, these impurities can be transported to the target and deposited there to unacceptable high levels. In this contribution, the experimental results from Proto-MPEX are summarized, and the conclusions of the impurity source physics are given. Methods to reduce the impurity production, the impurity transport, and the net deposition on the target are presented. These methods to reduce the impurity production include Faraday screens to reduce the sheath voltage drop, high-Z refractory coatings to reduce the erosion yield, and wall conditioning methods. Methods to reduce the impurity transport include changes in the magnetic configuration as well as electron heating to change axial and radial temperature profiles. Preliminary results on the effectiveness of some of these methods are presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在使用螺旋等离子体源的线性等离子体设备中减少杂质产生和杂质向目标传输的研究与开发
用于测试等离子体表面材料(pfm)和聚变反应堆组件的线性等离子体装置经常受到等离子体源系统产生的固有杂质的影响。大多数线性等离子体装置使用内部电极(空心阴极、反射弧或级联弧),这通常是主要杂质的来源。下一代等离子体发生器使用射频(RF)等离子体源,如螺旋,以避免内部电极。然而,螺旋的高功率操作已被证明会导致杂质的产生,因为产生了高整流护套电压。根据等离子体参数和磁结构,这些杂质可以被运送到目标并沉积到不可接受的高水平。本文总结了Proto-MPEX的实验结果,并给出了杂质源物理的结论。提出了减少杂质产生、杂质输送和靶上净沉积的方法。这些减少杂质产生的方法包括减少护套电压降的法拉第筛网,降低侵蚀产率的高z耐火涂层,以及壁面调理方法。减少杂质输运的方法包括改变磁性构型以及电子加热来改变轴向和径向温度分布。给出了其中一些方法的有效性的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Plasma Science
IEEE Transactions on Plasma Science 物理-物理:流体与等离子体
CiteScore
3.00
自引率
20.00%
发文量
538
审稿时长
3.8 months
期刊介绍: The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.
期刊最新文献
IEEE Transactions on Plasma Science information for authors Blank Page Special Issue on Selected Papers from APSPT-14 May 2027 IEEE Transactions on Plasma Science information for authors Blank Page
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1