首页 > 最新文献

IEEE Transactions on Plasma Science最新文献

英文 中文
Editorial Announcing 2024 TPS Best Paper Award
IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2025-03-18 DOI: 10.1109/TPS.2025.3544352
Edl Schamiloglu
{"title":"Editorial Announcing 2024 TPS Best Paper Award","authors":"Edl Schamiloglu","doi":"10.1109/TPS.2025.3544352","DOIUrl":"https://doi.org/10.1109/TPS.2025.3544352","url":null,"abstract":"","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 3","pages":"362-363"},"PeriodicalIF":1.3,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10931864","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143645292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blank Page
IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2025-03-18 DOI: 10.1109/TPS.2025.3547654
{"title":"Blank Page","authors":"","doi":"10.1109/TPS.2025.3547654","DOIUrl":"https://doi.org/10.1109/TPS.2025.3547654","url":null,"abstract":"","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 3","pages":"C4-C4"},"PeriodicalIF":1.3,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10931863","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143645268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Announcing the Twentieth Special Issue of IEEE Transactions on Plasma Science on High-Power Microwave Generation, June 2026 宣布将于 2026 年 6 月出版《IEEE 等离子体科学杂志》关于高功率微波发生的第二十期特刊
IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2025-03-18 DOI: 10.1109/TPS.2025.3547679
{"title":"Announcing the Twentieth Special Issue of IEEE Transactions on Plasma Science on High-Power Microwave Generation, June 2026","authors":"","doi":"10.1109/TPS.2025.3547679","DOIUrl":"https://doi.org/10.1109/TPS.2025.3547679","url":null,"abstract":"","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 3","pages":"476-476"},"PeriodicalIF":1.3,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10932649","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143645161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blank Page
IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2025-02-27 DOI: 10.1109/TPS.2025.3540523
{"title":"Blank Page","authors":"","doi":"10.1109/TPS.2025.3540523","DOIUrl":"https://doi.org/10.1109/TPS.2025.3540523","url":null,"abstract":"","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 2","pages":"C4-C4"},"PeriodicalIF":1.3,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10907270","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143512766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Spatial Resolution Effect of N2/O2 on Atmospheric Pressure Ar Plasma Jet N2/O2 对大气压氩等离子体射流的空间分辨率影响
IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2025-02-26 DOI: 10.1109/TPS.2025.3532778
Song Jiang;Chen Zhu;Yonggang Wang;Qian Qu;Zhonghang Wu
The atmospheric pressure low-temperature plasma jet (APPJ) can generate a wide variety of excited and active particles, with broad application prospects. Due to the strong spatiotemporal distribution characteristics of particles, the physical and chemical properties of plasma jets can be adjusted by changing the type and ratio of working gas, which is crucial for improving jet treatment efficiency and achieving specific treatment effects. This article innovatively analyzes the variations in the spatial distribution, intensity distribution, and activation region distribution of short-lived active substances that are crucial in the application of plasma jets under different gas backgrounds. Under the context of multiple variables, the physical characteristics of the plasma jets are comprehensively analyzed. The results show that the addition of N2 and O2 will weaken the discharge current and power, especially oxygen. After doping with 1% nitrogen, the jet length remains basically unchanged, but after doping with 1% oxygen, the jet length sharply decreases. Most active substances are concentrated at the nozzle of the jet pipe. The activation region of $mathrm {OH}(mathrm {A}^{2}Sigma ^{+}to mathrm {X}^{2}{Pi })$ is significantly lower than that of $mathrm {N}_{2}(mathrm {C}^{3}Pi _{mathrm {u}}to mathrm {B}^{3}Pi _{mathrm {g}})$ . As the N2 content increases from 0% to 1%, the activation region of $mathrm {OH}(mathrm {A}^{2}Sigma ^{+}to mathrm {X}^{2}Pi)$ decays from 17 to 12 mm and the activation region of $mathrm {N}_{2}(mathrm {C}^{3}{Pi }_{mathrm {u}}to mathrm {B}^{3}Pi _{mathrm {g}})$ remains unchanged, but the intensity of $mathrm {N}_{2}(mathrm {C}^{3}Pi _{mathrm {u}}to mathrm {B}^{3}Pi _{mathrm {g}})$ spectral line rises rapidly. As the O2 content increases from 0% to 0.1%, the activation region of $mathrm {OH}(mathrm {A}^{2}{Sigma }^{+}to mathrm {X}^{2}{Pi)}$ has decayed below 10 mm. The intensity of $mathrm {N}_{2}(mathrm {C}^{3}{Pi }_{mathrm {u}}to mathrm {B}^{3}Pi _{mathrm {g}})$ spectral extremely reduced by 48%. The increase in N2 content will lead to an increase in vibration and rotation temperature, while O2 is the opposite. From the axial spatial distribution, the vibrational temperature does not change much, but the rotational temperature decreases with increasing distance from the electrodes and eventually reaches equilibrium with the room temperature of 295 K.
{"title":"The Spatial Resolution Effect of N2/O2 on Atmospheric Pressure Ar Plasma Jet","authors":"Song Jiang;Chen Zhu;Yonggang Wang;Qian Qu;Zhonghang Wu","doi":"10.1109/TPS.2025.3532778","DOIUrl":"https://doi.org/10.1109/TPS.2025.3532778","url":null,"abstract":"The atmospheric pressure low-temperature plasma jet (APPJ) can generate a wide variety of excited and active particles, with broad application prospects. Due to the strong spatiotemporal distribution characteristics of particles, the physical and chemical properties of plasma jets can be adjusted by changing the type and ratio of working gas, which is crucial for improving jet treatment efficiency and achieving specific treatment effects. This article innovatively analyzes the variations in the spatial distribution, intensity distribution, and activation region distribution of short-lived active substances that are crucial in the application of plasma jets under different gas backgrounds. Under the context of multiple variables, the physical characteristics of the plasma jets are comprehensively analyzed. The results show that the addition of N2 and O2 will weaken the discharge current and power, especially oxygen. After doping with 1% nitrogen, the jet length remains basically unchanged, but after doping with 1% oxygen, the jet length sharply decreases. Most active substances are concentrated at the nozzle of the jet pipe. The activation region of <inline-formula> <tex-math>$mathrm {OH}(mathrm {A}^{2}Sigma ^{+}to mathrm {X}^{2}{Pi })$ </tex-math></inline-formula> is significantly lower than that of <inline-formula> <tex-math>$mathrm {N}_{2}(mathrm {C}^{3}Pi _{mathrm {u}}to mathrm {B}^{3}Pi _{mathrm {g}})$ </tex-math></inline-formula>. As the N2 content increases from 0% to 1%, the activation region of <inline-formula> <tex-math>$mathrm {OH}(mathrm {A}^{2}Sigma ^{+}to mathrm {X}^{2}Pi)$ </tex-math></inline-formula> decays from 17 to 12 mm and the activation region of <inline-formula> <tex-math>$mathrm {N}_{2}(mathrm {C}^{3}{Pi }_{mathrm {u}}to mathrm {B}^{3}Pi _{mathrm {g}})$ </tex-math></inline-formula> remains unchanged, but the intensity of <inline-formula> <tex-math>$mathrm {N}_{2}(mathrm {C}^{3}Pi _{mathrm {u}}to mathrm {B}^{3}Pi _{mathrm {g}})$ </tex-math></inline-formula> spectral line rises rapidly. As the O2 content increases from 0% to 0.1%, the activation region of <inline-formula> <tex-math>$mathrm {OH}(mathrm {A}^{2}{Sigma }^{+}to mathrm {X}^{2}{Pi)}$ </tex-math></inline-formula> has decayed below 10 mm. The intensity of <inline-formula> <tex-math>$mathrm {N}_{2}(mathrm {C}^{3}{Pi }_{mathrm {u}}to mathrm {B}^{3}Pi _{mathrm {g}})$ </tex-math></inline-formula> spectral extremely reduced by 48%. The increase in N2 content will lead to an increase in vibration and rotation temperature, while O2 is the opposite. From the axial spatial distribution, the vibrational temperature does not change much, but the rotational temperature decreases with increasing distance from the electrodes and eventually reaches equilibrium with the room temperature of 295 K.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 3","pages":"389-397"},"PeriodicalIF":1.3,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143645205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Analysis of Permanent Magnet Arc-Linear Motor Having Different Stator-Permanent Magnet Arrangements
IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2025-02-25 DOI: 10.1109/TPS.2025.3534983
Zhenbao Pan;Jiwen Zhao;Kaiwei Wei;Yiming Shen
Permanent magnet (PM) linear motor is widely used in the electromagnetic launch system due to the merits of high thrust and rapid response. Inheriting the advantages of linear motor, the PM arc-linear motor (PMAM) has been recognized as an eminent competitor for driving servo turntables and large telescope. This article designs a dual-PM excited PMAM (DPM-PMAM) having different PM arrangements and three-unit distributed complementary structure. Benefiting from the special stator-PM layouts, the DPM-PMAM exhibits the essential flux concentration effect, which contributes to enhance the torque capability. The motor topology and working principle of the studied DPM-PMAM are introduced. The feasible stator slot/rotor pole combinations and the major design parameters are optimized for improving electromagnetic performances. Then, the DPM-PMAM is quantitatively compared with the slot-PM excited PMAM (SPM-PMAM) and the yoke-PM excited PMAM (YPM-PMAM) based on the optimal designs. By comparison, it is found that the DPM-PMAM shows the improved average torque and good overload capability. Finally, the 2-D finite-element (FE) predicted results are validated by 3-D FE results.
{"title":"Design and Analysis of Permanent Magnet Arc-Linear Motor Having Different Stator-Permanent Magnet Arrangements","authors":"Zhenbao Pan;Jiwen Zhao;Kaiwei Wei;Yiming Shen","doi":"10.1109/TPS.2025.3534983","DOIUrl":"https://doi.org/10.1109/TPS.2025.3534983","url":null,"abstract":"Permanent magnet (PM) linear motor is widely used in the electromagnetic launch system due to the merits of high thrust and rapid response. Inheriting the advantages of linear motor, the PM arc-linear motor (PMAM) has been recognized as an eminent competitor for driving servo turntables and large telescope. This article designs a dual-PM excited PMAM (DPM-PMAM) having different PM arrangements and three-unit distributed complementary structure. Benefiting from the special stator-PM layouts, the DPM-PMAM exhibits the essential flux concentration effect, which contributes to enhance the torque capability. The motor topology and working principle of the studied DPM-PMAM are introduced. The feasible stator slot/rotor pole combinations and the major design parameters are optimized for improving electromagnetic performances. Then, the DPM-PMAM is quantitatively compared with the slot-PM excited PMAM (SPM-PMAM) and the yoke-PM excited PMAM (YPM-PMAM) based on the optimal designs. By comparison, it is found that the DPM-PMAM shows the improved average torque and good overload capability. Finally, the 2-D finite-element (FE) predicted results are validated by 3-D FE results.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 3","pages":"430-438"},"PeriodicalIF":1.3,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10904122","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143645172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reviewer Summary for Transactions on Plasma Science 等离子体科学》杂志审稿人摘要
IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2025-02-19 DOI: 10.1109/TPS.2025.3537436
{"title":"Reviewer Summary for Transactions on Plasma Science","authors":"","doi":"10.1109/TPS.2025.3537436","DOIUrl":"https://doi.org/10.1109/TPS.2025.3537436","url":null,"abstract":"","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 1","pages":"199-204"},"PeriodicalIF":1.3,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10893889","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143446230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blank Page
IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2025-02-19 DOI: 10.1109/TPS.2025.3540252
{"title":"Blank Page","authors":"","doi":"10.1109/TPS.2025.3540252","DOIUrl":"https://doi.org/10.1109/TPS.2025.3540252","url":null,"abstract":"","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 1","pages":"C4-C4"},"PeriodicalIF":1.3,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10893881","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143446300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the Removal of Methylene Blue by a Low-Voltage Submerged Arc Generated by the Graphite Electrodes
IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2025-02-14 DOI: 10.1109/TPS.2025.3533975
Xi Yu;Yongpeng Mo;Honghao Chen;Jiajian Zhang;Shenli Jia;Zongqian Shi
Plasma generated by a submerged arc has great potential in wastewater treatment. Carbon is widespread in nature. It is easily acquired and biocompatible. In this article, a low-voltage submerged arc generated by contact-separate of two electrodes is proposed to decompose methylene blue (MB). The process achieved a removal efficiency of 92.9% after 15 min treatment. The emission spectrum of the submerged arc indicated that active particles such as $cdot $ OH radicals, oxygen atoms, and hydrogen peroxide (H2O2) have been produced. Additionally, in the process of arc treatment, the wavelength of the absorption peak of MB solution shifted toward ultraviolet region. It indicated the demethylation of the MB molecules. The eroded particles from the graphite electrodes were also examined, and the carbon quantum dots were observed. Furthermore, micro-scale fibrous entangled particles and layered particles with abundant pore structures were observed. These results demonstrate that the eroded particles own an absorption ability for MB, continuing decolorization of the treated solution without additional active particles generated by the submerged arc plasma.
浸没电弧产生的等离子体在废水处理方面具有巨大潜力。碳在自然界中广泛存在。它很容易获得,而且具有生物相容性。本文提出用两个电极接触分离产生的低压浸没电弧来分解亚甲基蓝(MB)。处理 15 分钟后,该工艺的去除率达到 92.9%。浸没电弧的发射光谱表明,产生了活性粒子,如 OH 自由基、氧原子和过氧化氢 (H2O2)。此外,在电弧处理过程中,甲基溴溶液吸收峰的波长向紫外区移动。这表明甲基溴分子发生了去甲基化作用。还对石墨电极的侵蚀颗粒进行了检测,并观察到了碳量子点。此外,还观察到微尺度的纤维状缠结颗粒和具有丰富孔隙结构的层状颗粒。这些结果表明,被侵蚀的颗粒具有吸收甲基溴的能力,在处理过的溶液中继续脱色,而不需要浸没弧等离子体产生额外的活性颗粒。
{"title":"Study on the Removal of Methylene Blue by a Low-Voltage Submerged Arc Generated by the Graphite Electrodes","authors":"Xi Yu;Yongpeng Mo;Honghao Chen;Jiajian Zhang;Shenli Jia;Zongqian Shi","doi":"10.1109/TPS.2025.3533975","DOIUrl":"https://doi.org/10.1109/TPS.2025.3533975","url":null,"abstract":"Plasma generated by a submerged arc has great potential in wastewater treatment. Carbon is widespread in nature. It is easily acquired and biocompatible. In this article, a low-voltage submerged arc generated by contact-separate of two electrodes is proposed to decompose methylene blue (MB). The process achieved a removal efficiency of 92.9% after 15 min treatment. The emission spectrum of the submerged arc indicated that active particles such as <inline-formula> <tex-math>$cdot $ </tex-math></inline-formula> OH radicals, oxygen atoms, and hydrogen peroxide (H2O2) have been produced. Additionally, in the process of arc treatment, the wavelength of the absorption peak of MB solution shifted toward ultraviolet region. It indicated the demethylation of the MB molecules. The eroded particles from the graphite electrodes were also examined, and the carbon quantum dots were observed. Furthermore, micro-scale fibrous entangled particles and layered particles with abundant pore structures were observed. These results demonstrate that the eroded particles own an absorption ability for MB, continuing decolorization of the treated solution without additional active particles generated by the submerged arc plasma.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 3","pages":"405-414"},"PeriodicalIF":1.3,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10890918","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143645160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Performance Dual-Band Bandpass Filter Using SIPW and CSRRs
IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2025-02-12 DOI: 10.1109/TPS.2025.3535934
Kunlin Han;Xiongfei Jiang;Zixuan Wang;Zhuzhang Mao;Yong Wang;Lisi Tian;Qiang Yu
As frequency resources become increasingly scarce, the need to develop miniaturized, dual-band filters for improving spectrum utilization in broadband communications have become urgent. In this article, we introduce a novel approach for designing a dual-band bandpass filter (BPF) using a hybrid technique that combines substrate-integrated waveguide (SIW), spoof surface plasmon polariton (SSPP), and complementary split ring resonator (CSRR) technologies. The substrate-integrated plasmonic waveguide (SIPW) is created by etching meander-slot SSPP structures onto the top layer of the SIW. This design reduces both the lateral and longitudinal dimensions without adding complexity. By etching CSRRs onto the back of the SIW, the filter achieves strong electromagnetic coupling and narrowband suppression, resulting in a dual-band BPF with operating frequencies of 7–8.1 and 10–11.2 GHz. To validate this design, we fabricated and measured a prototype. The results demonstrate that the proposed SIPW BPF exhibits exceptional filtering performance, with a return coefficient of more than −10 dB and an insertion loss (IL) of less than 1.7 dB in both passbands. In adddition, the designed BPF features wide passband and stopband characteristics.
{"title":"High-Performance Dual-Band Bandpass Filter Using SIPW and CSRRs","authors":"Kunlin Han;Xiongfei Jiang;Zixuan Wang;Zhuzhang Mao;Yong Wang;Lisi Tian;Qiang Yu","doi":"10.1109/TPS.2025.3535934","DOIUrl":"https://doi.org/10.1109/TPS.2025.3535934","url":null,"abstract":"As frequency resources become increasingly scarce, the need to develop miniaturized, dual-band filters for improving spectrum utilization in broadband communications have become urgent. In this article, we introduce a novel approach for designing a dual-band bandpass filter (BPF) using a hybrid technique that combines substrate-integrated waveguide (SIW), spoof surface plasmon polariton (SSPP), and complementary split ring resonator (CSRR) technologies. The substrate-integrated plasmonic waveguide (SIPW) is created by etching meander-slot SSPP structures onto the top layer of the SIW. This design reduces both the lateral and longitudinal dimensions without adding complexity. By etching CSRRs onto the back of the SIW, the filter achieves strong electromagnetic coupling and narrowband suppression, resulting in a dual-band BPF with operating frequencies of 7–8.1 and 10–11.2 GHz. To validate this design, we fabricated and measured a prototype. The results demonstrate that the proposed SIPW BPF exhibits exceptional filtering performance, with a return coefficient of more than −10 dB and an insertion loss (IL) of less than 1.7 dB in both passbands. In adddition, the designed BPF features wide passband and stopband characteristics.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 3","pages":"382-388"},"PeriodicalIF":1.3,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143645289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Plasma Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1