Deep Koopman Neural Network for Analyzing High-Energy-Density Simulations of Electrical Wire Explosions

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS IEEE Transactions on Plasma Science Pub Date : 2024-08-19 DOI:10.1109/TPS.2024.3440255
Matthew J. Carrier;William A. Farmer;Bhuvana Srinivasan
{"title":"Deep Koopman Neural Network for Analyzing High-Energy-Density Simulations of Electrical Wire Explosions","authors":"Matthew J. Carrier;William A. Farmer;Bhuvana Srinivasan","doi":"10.1109/TPS.2024.3440255","DOIUrl":null,"url":null,"abstract":"Megaampere-scale electrical wire experiments (EWEs) provide a platform for studying magnetohydrodynamic (MHD) instability growth in magneto-inertial fusion (MIF) devices. Even when nonlinear simulations of these experiments can digitally reproduce much of the experimentally observed instability growth, interpreting the results and understanding mode growth and evolution can be non-trivial. As a first step toward providing better interpretation of these simulation features, this work investigates the use of a deep neural network that uses Koopman operator theory to analyze the dynamics of pulsed-power-driven explosions of EWEs. This deep neural network is trained on 1-D resistive MHD simulations of EWEs. This neural network learns to transform the nonlinear data into a lower-dimensional representation where the time dynamics are linear. Layers of this neural network are shown to learn features of the simulations, including the locations of shock waves and different physical regimes of the simulation. Using the learned features, the network can compress a time state of the simulation consisting of 5120 data point into a 36-parameter lower-dimensional latent space embedding. These embeddings are shown to be clustered in the latent space by initial radius and time state.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"52 10","pages":"4916-4932"},"PeriodicalIF":1.5000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10639183/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

Megaampere-scale electrical wire experiments (EWEs) provide a platform for studying magnetohydrodynamic (MHD) instability growth in magneto-inertial fusion (MIF) devices. Even when nonlinear simulations of these experiments can digitally reproduce much of the experimentally observed instability growth, interpreting the results and understanding mode growth and evolution can be non-trivial. As a first step toward providing better interpretation of these simulation features, this work investigates the use of a deep neural network that uses Koopman operator theory to analyze the dynamics of pulsed-power-driven explosions of EWEs. This deep neural network is trained on 1-D resistive MHD simulations of EWEs. This neural network learns to transform the nonlinear data into a lower-dimensional representation where the time dynamics are linear. Layers of this neural network are shown to learn features of the simulations, including the locations of shock waves and different physical regimes of the simulation. Using the learned features, the network can compress a time state of the simulation consisting of 5120 data point into a 36-parameter lower-dimensional latent space embedding. These embeddings are shown to be clustered in the latent space by initial radius and time state.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于分析电线爆炸高能量密度模拟的深度库普曼神经网络
兆安级导线实验为研究磁惯性聚变(MIF)器件的磁流体动力学(MHD)不稳定性增长提供了一个平台。即使这些实验的非线性模拟可以数字化地再现大部分实验观察到的不稳定性增长,解释结果和理解模式的增长和进化也不是微不足道的。作为更好地解释这些模拟特征的第一步,这项工作研究了深度神经网络的使用,该网络使用Koopman算子理论来分析ewe脉冲功率驱动爆炸的动力学。该深度神经网络是在ewe的一维电阻MHD模拟上进行训练的。该神经网络学习将非线性数据转换为时间动态为线性的低维表示。该神经网络的层被证明可以学习模拟的特征,包括冲击波的位置和模拟的不同物理状态。利用学习到的特征,网络可以将由5120个数据点组成的仿真时间状态压缩为36个参数的低维潜在空间嵌入。结果表明,这些嵌入在隐空间中按初始半径和时间状态聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Plasma Science
IEEE Transactions on Plasma Science 物理-物理:流体与等离子体
CiteScore
3.00
自引率
20.00%
发文量
538
审稿时长
3.8 months
期刊介绍: The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.
期刊最新文献
IEEE Transactions on Plasma Science information for authors Blank Page IEEE Transactions on Plasma Science Special Issue on Discharges and Electrical Insulation in Vacuum Special Issue on the 40th PSSI National Symposium on Plasma Science and Technology (PLASMA 2025) Special Issue on Selected Papers from APSPT-14 May 2027
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1