Forward Space Charge Wave Amplifiers Using Lossy Backward Circuit Waves

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS IEEE Transactions on Plasma Science Pub Date : 2024-08-19 DOI:10.1109/TPS.2024.3440928
Patrick Forbes;Halil Topözlü;Nader Behdad;John H. Booske
{"title":"Forward Space Charge Wave Amplifiers Using Lossy Backward Circuit Waves","authors":"Patrick Forbes;Halil Topözlü;Nader Behdad;John H. Booske","doi":"10.1109/TPS.2024.3440928","DOIUrl":null,"url":null,"abstract":"Previous studies of the metamaterial-enhanced resistive wall amplifier (MERWA) predicted gain and bandwidth properties attractive for high-power microwave (HPM) applications. The MERWA theory used a transverse admittance matching (AM) technique at the boundary between the beam and a lossy negative-permittivity metamaterial (MTM) slab to predict that forward slow space charge wave growth should occur if the wall presents a resistive-inductive admittance to the beam. We show that the growth and bandwidth of the MERWA can be equivalently predicted via wave-coupling theory. The main interaction occurs between two coupled waves (CWs) that correspond to the beam slow space charge wave and a lossy backward propagating circuit wave in the limit of weak coupling. We present a two-wave-coupling model to build intuition and discuss two modes of operation, oscillation and amplification, in terms of a damped feedback system. We compare the two-wave-coupling solutions against four-wave model solutions. We further demonstrate and discuss equivalency between the AM model and the wave-coupling model for an infinite parallel plate geometry. Finally, we validate the AM method predictions using particle-in-cell (PIC) simulations.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"52 7","pages":"2734-2748"},"PeriodicalIF":1.3000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10639190/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

Previous studies of the metamaterial-enhanced resistive wall amplifier (MERWA) predicted gain and bandwidth properties attractive for high-power microwave (HPM) applications. The MERWA theory used a transverse admittance matching (AM) technique at the boundary between the beam and a lossy negative-permittivity metamaterial (MTM) slab to predict that forward slow space charge wave growth should occur if the wall presents a resistive-inductive admittance to the beam. We show that the growth and bandwidth of the MERWA can be equivalently predicted via wave-coupling theory. The main interaction occurs between two coupled waves (CWs) that correspond to the beam slow space charge wave and a lossy backward propagating circuit wave in the limit of weak coupling. We present a two-wave-coupling model to build intuition and discuss two modes of operation, oscillation and amplification, in terms of a damped feedback system. We compare the two-wave-coupling solutions against four-wave model solutions. We further demonstrate and discuss equivalency between the AM model and the wave-coupling model for an infinite parallel plate geometry. Finally, we validate the AM method predictions using particle-in-cell (PIC) simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用有损后向电路波的前向空间电荷波放大器
以前对超材料增强型电阻壁放大器(MERWA)的研究预测,其增益和带宽特性对高功率微波(HPM)应用很有吸引力。MERWA 理论在光束与有损耗负容限超材料 (MTM) 板之间的边界使用了横向导纳匹配 (AM) 技术,预测如果墙壁对光束具有阻抗-电感导纳,就会发生前向慢速空间电荷波增长。我们的研究表明,MERWA 的增长和带宽可以通过波耦合理论等效预测。主要的相互作用发生在两个耦合波(CW)之间,这两个波分别对应于弱耦合极限下的光束慢空间电荷波和有损后向传播电路波。我们提出了一个双波耦合模型来建立直观性,并从阻尼反馈系统的角度讨论了振荡和放大两种工作模式。我们将双波耦合解与四波模型解进行了比较。我们进一步证明并讨论了调幅模型与无限平行板几何形状的波耦合模型之间的等效性。最后,我们利用粒子入胞(PIC)模拟验证了调幅方法的预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Plasma Science
IEEE Transactions on Plasma Science 物理-物理:流体与等离子体
CiteScore
3.00
自引率
20.00%
发文量
538
审稿时长
3.8 months
期刊介绍: The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.
期刊最新文献
IEEE Transactions on Plasma Science Publication Information Table of Contents IEEE Transactions on Plasma Science Information for Authors Blank Page IEEE Transactions on Plasma Science Information for Authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1