{"title":"Unsupervised and Semisupervised Machine Learning Frameworks for Multiclass Tool Wear Recognition","authors":"Maryam Assafo;Peter Langendoerfer","doi":"10.1109/OJIES.2024.3455264","DOIUrl":null,"url":null,"abstract":"Tool condition monitoring (TCM) is crucial to ensure good quality products and avoid downtime. Machine learning has proven to be vital for TCM. However, existing works are predominately based on supervised learning, which hinders their applicability in real-world manufacturing settings, where data labeling is cumbersome and costly with in-service machines. Additionally, the existing unsupervised solutions mostly handle binary decision-based TCM which is unable to fully reflect the dynamics of tool wear progression. To address these issues, we propose different unsupervised and semisupervised five-class tool wear recognition frameworks to handle fully unlabeled and partially labeled data, respectively. The underlying methods include Laplacian score, sparse autoencoder (SAE), stacked SAE (SSAE), self-organizing map, Softmax, support vector machine, and random forest. For the semisupervised frameworks, we considered designs where labeled data influence only feature learning, classifier building, or both. We also investigated different training configurations of SSAE regarding the supervision level. We applied the frameworks on two run-to-failure datasets of milling tools, recorded using a microphone and an accelerometer. Single sensor and multisensor data under different percentages of labeled training data were considered in the evaluation. The results showed which of the frameworks led to the best predictive performance under which data settings, and highlighted the significance of sensor fusion and discriminative feature representations in combating the unavailability and scarcity of labels, among other findings. The highest macro-F1 achieved for the two datasets with fully unlabeled data reached 87.52% and 75.80%, respectively, and over 90% when only 25% of the training observations were labeled.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"993-1010"},"PeriodicalIF":5.2000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10668405","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10668405/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Tool condition monitoring (TCM) is crucial to ensure good quality products and avoid downtime. Machine learning has proven to be vital for TCM. However, existing works are predominately based on supervised learning, which hinders their applicability in real-world manufacturing settings, where data labeling is cumbersome and costly with in-service machines. Additionally, the existing unsupervised solutions mostly handle binary decision-based TCM which is unable to fully reflect the dynamics of tool wear progression. To address these issues, we propose different unsupervised and semisupervised five-class tool wear recognition frameworks to handle fully unlabeled and partially labeled data, respectively. The underlying methods include Laplacian score, sparse autoencoder (SAE), stacked SAE (SSAE), self-organizing map, Softmax, support vector machine, and random forest. For the semisupervised frameworks, we considered designs where labeled data influence only feature learning, classifier building, or both. We also investigated different training configurations of SSAE regarding the supervision level. We applied the frameworks on two run-to-failure datasets of milling tools, recorded using a microphone and an accelerometer. Single sensor and multisensor data under different percentages of labeled training data were considered in the evaluation. The results showed which of the frameworks led to the best predictive performance under which data settings, and highlighted the significance of sensor fusion and discriminative feature representations in combating the unavailability and scarcity of labels, among other findings. The highest macro-F1 achieved for the two datasets with fully unlabeled data reached 87.52% and 75.80%, respectively, and over 90% when only 25% of the training observations were labeled.
期刊介绍:
The IEEE Open Journal of the Industrial Electronics Society is dedicated to advancing information-intensive, knowledge-based automation, and digitalization, aiming to enhance various industrial and infrastructural ecosystems including energy, mobility, health, and home/building infrastructure. Encompassing a range of techniques leveraging data and information acquisition, analysis, manipulation, and distribution, the journal strives to achieve greater flexibility, efficiency, effectiveness, reliability, and security within digitalized and networked environments.
Our scope provides a platform for discourse and dissemination of the latest developments in numerous research and innovation areas. These include electrical components and systems, smart grids, industrial cyber-physical systems, motion control, robotics and mechatronics, sensors and actuators, factory and building communication and automation, industrial digitalization, flexible and reconfigurable manufacturing, assistant systems, industrial applications of artificial intelligence and data science, as well as the implementation of machine learning, artificial neural networks, and fuzzy logic. Additionally, we explore human factors in digitalized and networked ecosystems. Join us in exploring and shaping the future of industrial electronics and digitalization.