Electromagnetic Normalization of Channel Matrix for Holographic MIMO Communications

Shuai S. A. Yuan, Li Wei, Xiaoming Chen, Chongwen Huang, Wei E. I. Sha
{"title":"Electromagnetic Normalization of Channel Matrix for Holographic MIMO Communications","authors":"Shuai S. A. Yuan, Li Wei, Xiaoming Chen, Chongwen Huang, Wei E. I. Sha","doi":"arxiv-2409.08080","DOIUrl":null,"url":null,"abstract":"Holographic multiple-input and multiple-output (MIMO) communications\nintroduce innovative antenna array configurations, such as dense arrays and\nvolumetric arrays, which offer notable advantages over conventional planar\narrays with half-wavelength element spacing. However, accurately assessing the\nperformance of these new holographic MIMO systems necessitates careful\nconsideration of channel matrix normalization, as it is influenced by array\ngain, which, in turn, depends on the array topology. Traditional normalization\nmethods may be insufficient for assessing these advanced array topologies,\npotentially resulting in misleading or inaccurate evaluations. In this study,\nwe propose electromagnetic normalization approaches for the channel matrix that\naccommodate arbitrary array topologies, drawing on the array gains from\nanalytical, physical, and full-wave methods. Additionally, we introduce a\nnormalization method for near-field MIMO channels based on a rigorous dyadic\nGreen's function approach, which accounts for potential losses of gain at near\nfield. Finally, we perform capacity analyses under quasi-static, ergodic, and\nnear-field conditions, through adopting the proposed normalization techniques.\nOur findings indicate that channel matrix normalization should reflect the\nrealized gains of the antenna array in target directions. Failing to accurately\nnormalize the channel matrix can result in errors when evaluating the\nperformance limits and benefits of unconventional holographic array topologies,\npotentially compromising the optimal design of holographic MIMO systems.","PeriodicalId":501034,"journal":{"name":"arXiv - EE - Signal Processing","volume":"385 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Holographic multiple-input and multiple-output (MIMO) communications introduce innovative antenna array configurations, such as dense arrays and volumetric arrays, which offer notable advantages over conventional planar arrays with half-wavelength element spacing. However, accurately assessing the performance of these new holographic MIMO systems necessitates careful consideration of channel matrix normalization, as it is influenced by array gain, which, in turn, depends on the array topology. Traditional normalization methods may be insufficient for assessing these advanced array topologies, potentially resulting in misleading or inaccurate evaluations. In this study, we propose electromagnetic normalization approaches for the channel matrix that accommodate arbitrary array topologies, drawing on the array gains from analytical, physical, and full-wave methods. Additionally, we introduce a normalization method for near-field MIMO channels based on a rigorous dyadic Green's function approach, which accounts for potential losses of gain at near field. Finally, we perform capacity analyses under quasi-static, ergodic, and near-field conditions, through adopting the proposed normalization techniques. Our findings indicate that channel matrix normalization should reflect the realized gains of the antenna array in target directions. Failing to accurately normalize the channel matrix can result in errors when evaluating the performance limits and benefits of unconventional holographic array topologies, potentially compromising the optimal design of holographic MIMO systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全息多输入多输出通信信道矩阵的电磁归一化
全息多输入多输出(MIMO)通信引入了创新的天线阵列配置,如密集阵列和体积阵列,与具有半波长元件间距的传统平面阵列相比具有显著优势。然而,要准确评估这些新型全息多输入多输出系统的性能,就必须仔细考虑信道矩阵归一化问题,因为它受到阵列增益的影响,而阵列增益又取决于阵列拓扑结构。传统的归一化方法可能不足以评估这些先进的阵列拓扑结构,可能导致误导或不准确的评估。在本研究中,我们利用分析、物理和全波方法中的阵列增益,提出了适应任意阵列拓扑的信道矩阵电磁归一化方法。此外,我们还基于严格的二元格林函数方法,为近场 MIMO 信道引入了归一化方法,该方法考虑了近场增益的潜在损失。最后,通过采用所提出的归一化技术,我们对准静态、遍历和近场条件下的容量进行了分析。在评估非常规全息阵列拓扑的性能极限和优势时,如果不能准确归一化信道矩阵,就会导致错误,从而可能影响全息多输入多输出系统的优化设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blind Deconvolution on Graphs: Exact and Stable Recovery End-to-End Learning of Transmitter and Receiver Filters in Bandwidth Limited Fiber Optic Communication Systems Atmospheric Turbulence-Immune Free Space Optical Communication System based on Discrete-Time Analog Transmission User Subgrouping in Scalable Cell-Free Massive MIMO Multicasting Systems Covert Communications Without Pre-Sharing of Side Information and Channel Estimation Over Quasi-Static Fading Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1