User Subgrouping in Scalable Cell-Free Massive MIMO Multicasting Systems

Alejandro de la Fuente, Guillem Femenias, Felip Riera-Palou, Giovanni Interdonato
{"title":"User Subgrouping in Scalable Cell-Free Massive MIMO Multicasting Systems","authors":"Alejandro de la Fuente, Guillem Femenias, Felip Riera-Palou, Giovanni Interdonato","doi":"arxiv-2409.11871","DOIUrl":null,"url":null,"abstract":"Cell-free massive multiple-input multiple-output (CF-mMIMO) is a breakthrough\ntechnology for beyond-5G systems, designed to significantly boost the energy\nand spectral efficiencies of future mobile networks while ensuring a consistent\nquality of service for all users. Additionally, multicasting has gained\nconsiderable attention recently because physical-layer multicasting offers an\nefficient method for simultaneously serving multiple users with identical\nservice demands by sharing radio resources. Typically, multicast services are\ndelivered either via unicast transmissions or a single multicast transmission.\nThis work, however, introduces a novel subgroup-centric multicast CF-mMIMO\nframework that divides users into several multicast subgroups based on the\nsimilarities in their spatial channel characteristics. This approach allows for\nefficient sharing of the pilot sequences used for channel estimation and the\nprecoding filters used for data transmission. The proposed framework employs\ntwo scalable precoding strategies: centralized improved partial MMSE (IP-MMSE)\nand distributed conjugate beam-forming (CB). Numerical results show that for\nscenarios where users are uniformly distributed across the service area,\nunicast transmissions using centralized IP-MMSE precoding are optimal. However,\nin cases where users are spatially clustered, multicast subgrouping\nsignificantly improves the sum spectral efficiency (SE) of the multicast\nservice compared to both unicast and single multicast transmission. Notably, in\nclustered scenarios, distributed CB precoding outperforms IP-MMSE in terms of\nper-user SE, making it the best solution for delivering multicast content.","PeriodicalId":501034,"journal":{"name":"arXiv - EE - Signal Processing","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cell-free massive multiple-input multiple-output (CF-mMIMO) is a breakthrough technology for beyond-5G systems, designed to significantly boost the energy and spectral efficiencies of future mobile networks while ensuring a consistent quality of service for all users. Additionally, multicasting has gained considerable attention recently because physical-layer multicasting offers an efficient method for simultaneously serving multiple users with identical service demands by sharing radio resources. Typically, multicast services are delivered either via unicast transmissions or a single multicast transmission. This work, however, introduces a novel subgroup-centric multicast CF-mMIMO framework that divides users into several multicast subgroups based on the similarities in their spatial channel characteristics. This approach allows for efficient sharing of the pilot sequences used for channel estimation and the precoding filters used for data transmission. The proposed framework employs two scalable precoding strategies: centralized improved partial MMSE (IP-MMSE) and distributed conjugate beam-forming (CB). Numerical results show that for scenarios where users are uniformly distributed across the service area, unicast transmissions using centralized IP-MMSE precoding are optimal. However, in cases where users are spatially clustered, multicast subgrouping significantly improves the sum spectral efficiency (SE) of the multicast service compared to both unicast and single multicast transmission. Notably, in clustered scenarios, distributed CB precoding outperforms IP-MMSE in terms of per-user SE, making it the best solution for delivering multicast content.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可扩展无小区大规模 MIMO 多播系统中的用户分组
无小区大规模多输入多输出(CF-mMIMO)是超越 5G 系统的突破性技术,旨在显著提高未来移动网络的能效和频谱效率,同时确保为所有用户提供一致的服务质量。此外,由于物理层组播提供了一种高效方法,可通过共享无线电资源同时为具有相同服务需求的多个用户提供服务,因此组播最近获得了相当大的关注。通常,组播服务是通过单播传输或单一组播传输提供的。然而,这项工作引入了一种新颖的以子组为中心的组播 CF-mMIMO 框架,该框架根据用户空间信道特性的相似性将用户分为多个组播子组。这种方法允许有效共享用于信道估计的先导序列和用于数据传输的编码滤波器。所提出的框架采用了两种可扩展的预编码策略:集中式改进部分 MMSE(IP-MMSE)和分布式共轭波束形成(CB)。数值结果表明,在用户均匀分布在整个服务区域的情况下,使用集中式 IP-MMSE 预编码的单播传输是最佳的。然而,在用户空间集群的情况下,与单播和单一组播传输相比,组播分组显著提高了组播服务的总频谱效率(SE)。值得注意的是,在用户集群的情况下,分布式 CB 预编码在单用户 SE 方面优于 IP-MMSE,使其成为传输组播内容的最佳解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blind Deconvolution on Graphs: Exact and Stable Recovery End-to-End Learning of Transmitter and Receiver Filters in Bandwidth Limited Fiber Optic Communication Systems Atmospheric Turbulence-Immune Free Space Optical Communication System based on Discrete-Time Analog Transmission User Subgrouping in Scalable Cell-Free Massive MIMO Multicasting Systems Covert Communications Without Pre-Sharing of Side Information and Channel Estimation Over Quasi-Static Fading Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1