Non-negative Weighted DAG Structure Learning

Samuel Rey, Seyed Saman Saboksayr, Gonzalo Mateos
{"title":"Non-negative Weighted DAG Structure Learning","authors":"Samuel Rey, Seyed Saman Saboksayr, Gonzalo Mateos","doi":"arxiv-2409.07880","DOIUrl":null,"url":null,"abstract":"We address the problem of learning the topology of directed acyclic graphs\n(DAGs) from nodal observations, which adhere to a linear structural equation\nmodel. Recent advances framed the combinatorial DAG structure learning task as\na continuous optimization problem, yet existing methods must contend with the\ncomplexities of non-convex optimization. To overcome this limitation, we assume\nthat the latent DAG contains only non-negative edge weights. Leveraging this\nadditional structure, we argue that cycles can be effectively characterized\n(and prevented) using a convex acyclicity function based on the log-determinant\nof the adjacency matrix. This convexity allows us to relax the task of learning\nthe non-negative weighted DAG as an abstract convex optimization problem. We\npropose a DAG recovery algorithm based on the method of multipliers, that is\nguaranteed to return a global minimizer. Furthermore, we prove that in the\ninfinite sample size regime, the convexity of our approach ensures the recovery\nof the true DAG structure. We empirically validate the performance of our\nalgorithm in several reproducible synthetic-data test cases, showing that it\noutperforms state-of-the-art alternatives.","PeriodicalId":501034,"journal":{"name":"arXiv - EE - Signal Processing","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We address the problem of learning the topology of directed acyclic graphs (DAGs) from nodal observations, which adhere to a linear structural equation model. Recent advances framed the combinatorial DAG structure learning task as a continuous optimization problem, yet existing methods must contend with the complexities of non-convex optimization. To overcome this limitation, we assume that the latent DAG contains only non-negative edge weights. Leveraging this additional structure, we argue that cycles can be effectively characterized (and prevented) using a convex acyclicity function based on the log-determinant of the adjacency matrix. This convexity allows us to relax the task of learning the non-negative weighted DAG as an abstract convex optimization problem. We propose a DAG recovery algorithm based on the method of multipliers, that is guaranteed to return a global minimizer. Furthermore, we prove that in the infinite sample size regime, the convexity of our approach ensures the recovery of the true DAG structure. We empirically validate the performance of our algorithm in several reproducible synthetic-data test cases, showing that it outperforms state-of-the-art alternatives.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非负加权 DAG 结构学习
我们要解决的问题是从节点观测中学习有向无环图(DAG)拓扑结构的问题,而节点观测遵循线性结构方程模型。最近的进展将组合 DAG 结构学习任务框定为一个连续优化问题,但现有方法必须与非凸优化的复杂性作斗争。为了克服这一局限,我们假设潜在 DAG 只包含非负边权重。利用这一附加结构,我们认为可以使用基于邻接矩阵对数确定的凸非周期性函数来有效地描述(和防止)周期。这种凸性允许我们将学习非负加权 DAG 的任务放宽为一个抽象的凸优化问题。我们提出了一种基于乘法的 DAG 恢复算法,它能保证返回全局最小值。此外,我们还证明了在样本量无限大的情况下,我们方法的凸性可以确保恢复真实的 DAG 结构。我们在几个可重复的合成数据测试案例中实证验证了我们算法的性能,结果表明它优于最先进的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blind Deconvolution on Graphs: Exact and Stable Recovery End-to-End Learning of Transmitter and Receiver Filters in Bandwidth Limited Fiber Optic Communication Systems Atmospheric Turbulence-Immune Free Space Optical Communication System based on Discrete-Time Analog Transmission User Subgrouping in Scalable Cell-Free Massive MIMO Multicasting Systems Covert Communications Without Pre-Sharing of Side Information and Channel Estimation Over Quasi-Static Fading Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1