Modulational Instability of Electromagnetic Waves on Mars Associated with Dust Acoustic Mode

IF 0.9 4区 物理与天体物理 Q4 PHYSICS, FLUIDS & PLASMAS Plasma Physics Reports Pub Date : 2024-09-05 DOI:10.1134/S1063780X24600609
T. I. Morozova, S. I. Popel
{"title":"Modulational Instability of Electromagnetic Waves on Mars Associated with Dust Acoustic Mode","authors":"T. I. Morozova,&nbsp;S. I. Popel","doi":"10.1134/S1063780X24600609","DOIUrl":null,"url":null,"abstract":"<p>It is assumed that the low-frequency noise recorded on the surface of Mars may be associated with a charged dust component in its atmosphere and the occurrence of sound perturbations in such a dust system that modulate the electromagnetic wave from the Sun. It is also shown that it can be associated with plasma-dust processes in meteoroid tails. The mechanism for the excitation of modulational instability of an electromagnetic wave associated with a dust acoustic mode in the Martian atmosphere, namely in dust clouds at an altitude of 60 and 100 km, where the dusty plasma with particles of frozen carbon dioxide is detected, is described. It is shown that the development of modulational instability is due to the influence of high-frequency electromagnetic waves on the dusty plasma in the Martian atmosphere from both natural sources (solar radiation, lightning discharges) and anthropogenic nature (from equipment from space satellites and from stations on the surface of the planet). The parameters of electromagnetic pump waves, at which the active development of modulational instability of electromagnetic waves associated with the dust acoustic mode is expected, and the modulational instability growth rates are found. The development of the modulational instability in the dusty plasma of Martian clouds, in turn, can explain the occurrence of low-frequency noise recorded by equipment on the surface of Mars. The relation between observed radio noise in the range of 3 Hz–3 kHz and plasma-dust processes in the Martian atmosphere, in particular, in dust clouds at 60 and 100 km, as well as in dusty plasma meteroid tails, where the dust concentration is high, is discussed.</p>","PeriodicalId":735,"journal":{"name":"Plasma Physics Reports","volume":"50 7","pages":"822 - 828"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Physics Reports","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063780X24600609","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

It is assumed that the low-frequency noise recorded on the surface of Mars may be associated with a charged dust component in its atmosphere and the occurrence of sound perturbations in such a dust system that modulate the electromagnetic wave from the Sun. It is also shown that it can be associated with plasma-dust processes in meteoroid tails. The mechanism for the excitation of modulational instability of an electromagnetic wave associated with a dust acoustic mode in the Martian atmosphere, namely in dust clouds at an altitude of 60 and 100 km, where the dusty plasma with particles of frozen carbon dioxide is detected, is described. It is shown that the development of modulational instability is due to the influence of high-frequency electromagnetic waves on the dusty plasma in the Martian atmosphere from both natural sources (solar radiation, lightning discharges) and anthropogenic nature (from equipment from space satellites and from stations on the surface of the planet). The parameters of electromagnetic pump waves, at which the active development of modulational instability of electromagnetic waves associated with the dust acoustic mode is expected, and the modulational instability growth rates are found. The development of the modulational instability in the dusty plasma of Martian clouds, in turn, can explain the occurrence of low-frequency noise recorded by equipment on the surface of Mars. The relation between observed radio noise in the range of 3 Hz–3 kHz and plasma-dust processes in the Martian atmosphere, in particular, in dust clouds at 60 and 100 km, as well as in dusty plasma meteroid tails, where the dust concentration is high, is discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
火星上电磁波的调制不稳定性与尘埃声学模式有关
摘要 假定在火星表面记录到的低频噪声可能与火星大气中的带电尘埃成分以及在这种尘埃系统中发生的声音扰动有关,这种扰动会调节来自太阳的电磁波。研究还表明,这可能与流星体尾部的等离子体-尘埃过程有关。描述了火星大气中与尘埃声学模式相关的电磁波调制不稳定性的激发机制,即在 60 和 100 千米高度的尘埃云中,探测到含有冷冻二氧化碳颗粒的尘埃等离子体。研究表明,调制不稳定性的产生是由于高频电磁波对火星大气中尘埃等离子体的影响,这些电磁波既有自然来源(太阳辐射、闪电放电),也有人为性质(来自空间卫星设备和地球表面站)。发现了电磁泵波的参数,在这些参数下,与尘埃声学模式相关的电磁波的调制不稳定性会积极发展,并发现了调制不稳定性的增长率。火星云尘埃等离子体中调制不稳定性的发展反过来可以解释火星表面设备记录到的低频噪声的发生。讨论了观测到的 3 Hz-3 kHz 范围内的无线电噪声与火星大气中的等离子体-尘埃过程之间的关系,特别是在 60 和 100 公里处的尘埃云中,以及在尘埃浓度较高的尘埃等离子体流星体尾部。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plasma Physics Reports
Plasma Physics Reports 物理-物理:流体与等离子体
CiteScore
1.90
自引率
36.40%
发文量
104
审稿时长
4-8 weeks
期刊介绍: Plasma Physics Reports is a peer reviewed journal devoted to plasma physics. The journal covers the following topics: high-temperature plasma physics related to the problem of controlled nuclear fusion based on magnetic and inertial confinement; physics of cosmic plasma, including magnetosphere plasma, sun and stellar plasma, etc.; gas discharge plasma and plasma generated by laser and particle beams. The journal also publishes papers on such related topics as plasma electronics, generation of radiation in plasma, and plasma diagnostics. As well as other original communications, the journal publishes topical reviews and conference proceedings.
期刊最新文献
Numerical Simulation of Pulse-Periodic Nanosecond Electric Discharge in Air On the Nonlinear Dust Acoustic Perturbations in the Ionosphere of Mars Nonlinear Interaction of Landau-Resonance Electrons with the EMIC Wave in a Multicomponent Plasma Enhancement of the Anticancer Effect during the Simultaneous Treatment of Cells by a Cold Atmospheric Plasma Jet and Gold Nanoparticles Integral Plasma Current and Determination of Current Sheet Parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1