Abdurrahim Temiz, Fatih Pehlivan, Fatih H. Öztürk, Sermet Demir
{"title":"Compression behavior of sheet-network triply periodic minimal surface metamaterials as a function of density grading","authors":"Abdurrahim Temiz, Fatih Pehlivan, Fatih H. Öztürk, Sermet Demir","doi":"10.1177/07316844241273090","DOIUrl":null,"url":null,"abstract":"This study involved the fabrication and experimental testing of five distinct geometries of triply periodic minimal surface (TPMS) cellular structures characterized by uniform and relative density grading. The specific geometries examined were Schoen-Gyroid, Schwarz-Diamond, Schoen-I-WP, Schwarz-Primitive, and Fischer-Koch S. The experimental tests focused on subjecting these structures to compression loads. Samples were produced with a masked stereolithography (MSLA) printer. The samples had initial and end volume fractions (VFs) ranging from 20% to 60% in increments of 10%, with five varied relative densities. The Taguchi method is utilized to determine the optimal testing parameters, while the Analysis of Variance (ANOVA) test is employed to examine the data. The novelty of this paper is to comprehensively investigate the structural efficiency and versatility of TPMS for various applications by optimizing five different functionally graded TPMSs. The ANOVA findings highlighted the substantial impacts of Initial VF, Final VF, and TPMS type on the observed fluctuations in stress at the first peak. The Initial VF made a significant contribution, demonstrating 28.8% higher effectiveness than the Final VF. The TPMS type had a statistically significant effect on the amount of energy absorbed, revealing that different lattice types have abilities to absorb energy.","PeriodicalId":16943,"journal":{"name":"Journal of Reinforced Plastics and Composites","volume":"8 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reinforced Plastics and Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/07316844241273090","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
This study involved the fabrication and experimental testing of five distinct geometries of triply periodic minimal surface (TPMS) cellular structures characterized by uniform and relative density grading. The specific geometries examined were Schoen-Gyroid, Schwarz-Diamond, Schoen-I-WP, Schwarz-Primitive, and Fischer-Koch S. The experimental tests focused on subjecting these structures to compression loads. Samples were produced with a masked stereolithography (MSLA) printer. The samples had initial and end volume fractions (VFs) ranging from 20% to 60% in increments of 10%, with five varied relative densities. The Taguchi method is utilized to determine the optimal testing parameters, while the Analysis of Variance (ANOVA) test is employed to examine the data. The novelty of this paper is to comprehensively investigate the structural efficiency and versatility of TPMS for various applications by optimizing five different functionally graded TPMSs. The ANOVA findings highlighted the substantial impacts of Initial VF, Final VF, and TPMS type on the observed fluctuations in stress at the first peak. The Initial VF made a significant contribution, demonstrating 28.8% higher effectiveness than the Final VF. The TPMS type had a statistically significant effect on the amount of energy absorbed, revealing that different lattice types have abilities to absorb energy.
期刊介绍:
The Journal of Reinforced Plastics and Composites is a fully peer-reviewed international journal that publishes original research and review articles on a broad range of today''s reinforced plastics and composites including areas in:
Constituent materials: matrix materials, reinforcements and coatings.
Properties and performance: The results of testing, predictive models, and in-service evaluation of a wide range of materials are published, providing the reader with extensive properties data for reference.
Analysis and design: Frequency reports on these subjects inform the reader of analytical techniques, design processes and the many design options available in materials composition.
Processing and fabrication: There is increased interest among materials engineers in cost-effective processing.
Applications: Reports on new materials R&D are often related to the service requirements of specific application areas, such as automotive, marine, construction and aviation.
Reports on special topics are regularly included such as recycling, environmental effects, novel materials, computer-aided design, predictive modelling, and "smart" composite materials.
"The articles in the Journal of Reinforced Plastics and Products are must reading for engineers in industry and for researchers working on leading edge problems" Professor Emeritus Stephen W Tsai National Sun Yat-sen University, Taiwan
This journal is a member of the Committee on Publication Ethics (COPE).