Athar Ali Khan Gorar, Guo Zhiyi, Zhicheng Wang, Chen Qiufei, Abbas Daham, Muhammad Nadeem Ashraf, Jun Wang, Wen-Bin Liu
{"title":"Fire-safe composites made from bio-derived and difunctional benzoxazine hybridized matrix reinforced with Pistachio shell particles","authors":"Athar Ali Khan Gorar, Guo Zhiyi, Zhicheng Wang, Chen Qiufei, Abbas Daham, Muhammad Nadeem Ashraf, Jun Wang, Wen-Bin Liu","doi":"10.1177/07316844241273040","DOIUrl":null,"url":null,"abstract":"An isothermal compression molding process was used to create composites reinforced with pistachio shell particles. The composites were made using Bisphenol A–aniline-based benzoxazine and bio-based benzoxazine (VB) monomers derived from vanillin and furfuryl amine. The benzoxazine composites were developed by following green chemistry principles and blending with different weight percentages of Alkali treated pistachio shell particles. Proton nuclear magnetic resonance and Fourier transform infrared spectroscopy confirmed the structure of the VB monomer. Differential scanning calorimetry study shows the curing behavior of monomers and their blends. Surface treatment significantly enhanced the filler’s thermal stability. Copolymerization improved mobility and helped to align the chain and activate reactive groups at lower temperatures, lowering the curing temperature to 229°C with the inclusion of particles. The mechanical properties of composites are significantly enhanced. Compared to the neat matrix, composites showed a maximum increase of 155% in bending strength and 104.5% in impact tests. The theoretical model and simulation results are in good agreement with the experiment data. Thermogravimetric analysis of composites showed that neat polymers and composites have excellent thermal stability ( T<jats:sub>10%</jats:sub> of 296; Y<jats:sub> c</jats:sub> 38.4%). The flammability test (UL-94) reveals that composites are rated as V-0 and can be categorized as flame-retardant materials.","PeriodicalId":16943,"journal":{"name":"Journal of Reinforced Plastics and Composites","volume":"1 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reinforced Plastics and Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/07316844241273040","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
An isothermal compression molding process was used to create composites reinforced with pistachio shell particles. The composites were made using Bisphenol A–aniline-based benzoxazine and bio-based benzoxazine (VB) monomers derived from vanillin and furfuryl amine. The benzoxazine composites were developed by following green chemistry principles and blending with different weight percentages of Alkali treated pistachio shell particles. Proton nuclear magnetic resonance and Fourier transform infrared spectroscopy confirmed the structure of the VB monomer. Differential scanning calorimetry study shows the curing behavior of monomers and their blends. Surface treatment significantly enhanced the filler’s thermal stability. Copolymerization improved mobility and helped to align the chain and activate reactive groups at lower temperatures, lowering the curing temperature to 229°C with the inclusion of particles. The mechanical properties of composites are significantly enhanced. Compared to the neat matrix, composites showed a maximum increase of 155% in bending strength and 104.5% in impact tests. The theoretical model and simulation results are in good agreement with the experiment data. Thermogravimetric analysis of composites showed that neat polymers and composites have excellent thermal stability ( T10% of 296; Y c 38.4%). The flammability test (UL-94) reveals that composites are rated as V-0 and can be categorized as flame-retardant materials.
期刊介绍:
The Journal of Reinforced Plastics and Composites is a fully peer-reviewed international journal that publishes original research and review articles on a broad range of today''s reinforced plastics and composites including areas in:
Constituent materials: matrix materials, reinforcements and coatings.
Properties and performance: The results of testing, predictive models, and in-service evaluation of a wide range of materials are published, providing the reader with extensive properties data for reference.
Analysis and design: Frequency reports on these subjects inform the reader of analytical techniques, design processes and the many design options available in materials composition.
Processing and fabrication: There is increased interest among materials engineers in cost-effective processing.
Applications: Reports on new materials R&D are often related to the service requirements of specific application areas, such as automotive, marine, construction and aviation.
Reports on special topics are regularly included such as recycling, environmental effects, novel materials, computer-aided design, predictive modelling, and "smart" composite materials.
"The articles in the Journal of Reinforced Plastics and Products are must reading for engineers in industry and for researchers working on leading edge problems" Professor Emeritus Stephen W Tsai National Sun Yat-sen University, Taiwan
This journal is a member of the Committee on Publication Ethics (COPE).