Yiting Jiang, Hao Wu, Xinyu Ye, Chengjie Ge, Zhiqiang Yu, Dianbo Ruan, Xinkun Suo
{"title":"Bonding Mechanism of Arc-Sprayed ZnAl Coatings on Polypropylene Films: Numerical Simulation of Particle Behavior","authors":"Yiting Jiang, Hao Wu, Xinyu Ye, Chengjie Ge, Zhiqiang Yu, Dianbo Ruan, Xinkun Suo","doi":"10.1007/s11666-024-01799-z","DOIUrl":null,"url":null,"abstract":"<div><p>Interface microstructures of metallic coatings at end faces are critical for durability of metallic polypropylene (MPP) capacitors. However, the microstructures are difficult to be regulated efficiently due to the specificity of the polymer substrates. Therefore, ZnAl coatings were deposited at end faces of MPP capacitors by arc spraying. The temperature and velocity of in-flight droplets were regulated with different spray distance. A modified numerical simulation with a combustion model was employed to calculate the temperature and velocity of the droplets. The interface microstructures and equivalent series resistance of the capacitors were characterized. The results show that the temperature of the droplets continued to increase during the flight due to exothermic oxidation. The interface of the coatings with the spray distance of 150 mm presented a dendritic microstructure with deeper embedment depth and more bonding layers. The bonding layers reduced as the spray distance decreased to 120 mm because of the damage of the MPP layers. The embedment depth of the coatings decreased as the spray distance increased to 180 mm due to lower temperature of the droplets. The equivalent series resistance of the capacitors decreased to 7.84 mΩ with the dendritic interface microstructures. The research provides a new numerical model to optimize arc spraying and improve the quality of MPP capacitors.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"33 6","pages":"1914 - 1925"},"PeriodicalIF":3.2000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Spray Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11666-024-01799-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
Interface microstructures of metallic coatings at end faces are critical for durability of metallic polypropylene (MPP) capacitors. However, the microstructures are difficult to be regulated efficiently due to the specificity of the polymer substrates. Therefore, ZnAl coatings were deposited at end faces of MPP capacitors by arc spraying. The temperature and velocity of in-flight droplets were regulated with different spray distance. A modified numerical simulation with a combustion model was employed to calculate the temperature and velocity of the droplets. The interface microstructures and equivalent series resistance of the capacitors were characterized. The results show that the temperature of the droplets continued to increase during the flight due to exothermic oxidation. The interface of the coatings with the spray distance of 150 mm presented a dendritic microstructure with deeper embedment depth and more bonding layers. The bonding layers reduced as the spray distance decreased to 120 mm because of the damage of the MPP layers. The embedment depth of the coatings decreased as the spray distance increased to 180 mm due to lower temperature of the droplets. The equivalent series resistance of the capacitors decreased to 7.84 mΩ with the dendritic interface microstructures. The research provides a new numerical model to optimize arc spraying and improve the quality of MPP capacitors.
期刊介绍:
From the scientific to the practical, stay on top of advances in this fast-growing coating technology with ASM International''s Journal of Thermal Spray Technology. Critically reviewed scientific papers and engineering articles combine the best of new research with the latest applications and problem solving.
A service of the ASM Thermal Spray Society (TSS), the Journal of Thermal Spray Technology covers all fundamental and practical aspects of thermal spray science, including processes, feedstock manufacture, and testing and characterization.
The journal contains worldwide coverage of the latest research, products, equipment and process developments, and includes technical note case studies from real-time applications and in-depth topical reviews.