Synthesis of Graphene/Tungsten Carbide (WC) Nanocomposites from Palm Oil via Pulsed Arc Discharge in Liquid Medium: Morphological, Functional, and Gas Sensing Characterization
{"title":"Synthesis of Graphene/Tungsten Carbide (WC) Nanocomposites from Palm Oil via Pulsed Arc Discharge in Liquid Medium: Morphological, Functional, and Gas Sensing Characterization","authors":"Siti Zubaidah Siddick, Shaifulazuar Rozali, Yew Hoong Wong, Nabilah Mohamad Yusof","doi":"10.1007/s11664-024-11371-8","DOIUrl":null,"url":null,"abstract":"<p>With recent trends moving towards sustainable approaches in adherence to environmental, social, and governance (ESG) standards, research is actively focused on sustainable production of high-potential materials. In this study, a successful synthesis pathway was demonstrated for a graphene/tungsten carbide (WC) nanocomposite via pulsed arc discharge in liquid medium, utilizing crude palm oil and commercial cooking palm oil as liquid precursors. The synthesis of the graphene/WC nanocomposites was carried out by applying current with amplitude of 80 A and 100 A to the tungsten electrode immersed in the liquid palm oil, subjected to 150 arc discharges. A comparative investigation was performed to examine the morphological and functional characteristics of the materials synthesized from the different types of palm oil under different current conditions. In addition, the synthesized nanocomposites were assessed with respect to their gas sensing performance. Impressively, the CRG100(150) nanocomposite (produced from crude palm oil with current of 100 A) exhibited gas sensing response of 4.853% upon injection of 200 ppm of ethanol. The CRG100(150) nanocomposite also demonstrated short response and recovery time of 43 s and 182 s, respectively. Thus, the successful synthesis of CRG100(150), utilizing a natural precursor via arc discharge in liquid, paves the way for the development of sustainable gas sensing materials.</p>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":"87 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11664-024-11371-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
With recent trends moving towards sustainable approaches in adherence to environmental, social, and governance (ESG) standards, research is actively focused on sustainable production of high-potential materials. In this study, a successful synthesis pathway was demonstrated for a graphene/tungsten carbide (WC) nanocomposite via pulsed arc discharge in liquid medium, utilizing crude palm oil and commercial cooking palm oil as liquid precursors. The synthesis of the graphene/WC nanocomposites was carried out by applying current with amplitude of 80 A and 100 A to the tungsten electrode immersed in the liquid palm oil, subjected to 150 arc discharges. A comparative investigation was performed to examine the morphological and functional characteristics of the materials synthesized from the different types of palm oil under different current conditions. In addition, the synthesized nanocomposites were assessed with respect to their gas sensing performance. Impressively, the CRG100(150) nanocomposite (produced from crude palm oil with current of 100 A) exhibited gas sensing response of 4.853% upon injection of 200 ppm of ethanol. The CRG100(150) nanocomposite also demonstrated short response and recovery time of 43 s and 182 s, respectively. Thus, the successful synthesis of CRG100(150), utilizing a natural precursor via arc discharge in liquid, paves the way for the development of sustainable gas sensing materials.
期刊介绍:
The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications.
Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field.
A journal of The Minerals, Metals & Materials Society.