Design and Fabrication of Pt-Free Counter Electrode for Photovoltaic Application

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Electronic Materials Pub Date : 2024-09-04 DOI:10.1007/s11664-024-11390-5
Khursheed Ahmad, Mohd Quasim Khan, Ali Alsulmi, Tae Hwan Oh
{"title":"Design and Fabrication of Pt-Free Counter Electrode for Photovoltaic Application","authors":"Khursheed Ahmad, Mohd Quasim Khan, Ali Alsulmi, Tae Hwan Oh","doi":"10.1007/s11664-024-11390-5","DOIUrl":null,"url":null,"abstract":"<p>We report the synthesis of phosphorus (P)-doped reduced graphene oxide (P-rGO) using a hydrothermal method at 180°C for 7 h. Furthermore, the amorphous nature and phase purity of the hydrothermally synthesized P-rGO was studied by powder x-ray diffraction. The characteristic sheet-like surface structure of the P-rGO was confirmed by scanning electron microscopy. The presence of P in the P-rGO was authenticated by using energy-dispersive x-ray spectroscopy and photoelectron x-ray spectroscopy. The synthesized P-rGO was employed as a low-cost and Pt-free counter electrode material for the construction of dye-sensitized solar cells (DSSCs). The effect of annealing temperature on the construction of the DSSCs using P-rGO was also studied, and the highest power conversion efficiency of 6.3% and photocurrent density of 15.37 mA/cm<sup>2</sup> were obtained at 200°C. The platinum counter electrode-based DSSCs exhibited the power conversion efficiency of 7.4%. The performance of the P-rGO counter electrode-based DSSCs was reasonable and can be further improved by developing novel device architectures. This work proposes the simple, eco-friendly, and Pt-free counter electrode for the construction of DSSCs with a decent performance.</p>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11664-024-11390-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We report the synthesis of phosphorus (P)-doped reduced graphene oxide (P-rGO) using a hydrothermal method at 180°C for 7 h. Furthermore, the amorphous nature and phase purity of the hydrothermally synthesized P-rGO was studied by powder x-ray diffraction. The characteristic sheet-like surface structure of the P-rGO was confirmed by scanning electron microscopy. The presence of P in the P-rGO was authenticated by using energy-dispersive x-ray spectroscopy and photoelectron x-ray spectroscopy. The synthesized P-rGO was employed as a low-cost and Pt-free counter electrode material for the construction of dye-sensitized solar cells (DSSCs). The effect of annealing temperature on the construction of the DSSCs using P-rGO was also studied, and the highest power conversion efficiency of 6.3% and photocurrent density of 15.37 mA/cm2 were obtained at 200°C. The platinum counter electrode-based DSSCs exhibited the power conversion efficiency of 7.4%. The performance of the P-rGO counter electrode-based DSSCs was reasonable and can be further improved by developing novel device architectures. This work proposes the simple, eco-friendly, and Pt-free counter electrode for the construction of DSSCs with a decent performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计和制造用于光伏应用的无铂反电极
我们报告了采用水热法在 180°C 下 7 小时合成掺磷(P)的还原型氧化石墨烯(P-rGO)的情况。此外,我们还利用粉末 X 射线衍射法研究了水热法合成的 P-rGO 的无定形性质和相纯度。扫描电子显微镜证实了 P-rGO 特有的片状表面结构。利用能量色散 X 射线光谱和光电子 X 射线光谱鉴定了 P-rGO 中 P 的存在。合成的 P-rGO 被用作一种低成本、无铂的对电极材料,用于制造染料敏化太阳能电池(DSSC)。此外,还研究了退火温度对利用 P-rGO 构建 DSSC 的影响,结果表明,在 200°C 温度下,功率转换效率最高达 6.3%,光电流密度最高达 15.37 mA/cm2。基于铂对电极的 DSSC 的功率转换效率为 7.4%。基于 P-rGO 对电极的 DSSC 的性能是合理的,可以通过开发新的器件架构进一步提高性能。本研究提出了一种简单、环保且不含铂的对电极,用于构建具有良好性能的 DSSC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Electronic Materials
Journal of Electronic Materials 工程技术-材料科学:综合
CiteScore
4.10
自引率
4.80%
发文量
693
审稿时长
3.8 months
期刊介绍: The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications. Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field. A journal of The Minerals, Metals & Materials Society.
期刊最新文献
Factors Influencing Standard PID Test and Anti-PID Performance of Ga-Doped PERC Mono-Facial Photovoltaic Modules Enhanced Microwave Magnetic and Dielectric Properties of YBiIG Ferrite by Ca-Zr Co-substitution Structural, Optical, and Magnetic Studies of Nickel-Doped β-Ga2O3 Monoclinic and Spinel Polycrystalline Powders Effect of Epoxy Material Viscosity and Gold Wire Configuration on Light-Emitting Diode Encapsulation Process Synthesis and Characterization of Sn-Doped CuO Thin Films for Gas Sensor Toward H2S Gas Sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1