Enhanced Photovoltaic Performance of Heavy-Metal-Free AgInS2 Quantum Dot-Sensitized Solar Cells Using a Facile SILAR Method

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Electronic Materials Pub Date : 2024-08-20 DOI:10.1007/s11664-024-11365-6
Siti Utari Rahayu, Yu-Rou Wang, Ming-Way Lee
{"title":"Enhanced Photovoltaic Performance of Heavy-Metal-Free AgInS2 Quantum Dot-Sensitized Solar Cells Using a Facile SILAR Method","authors":"Siti Utari Rahayu, Yu-Rou Wang, Ming-Way Lee","doi":"10.1007/s11664-024-11365-6","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the synthesis of heavy-metal-free AgInS<sub>2</sub> quantum dots (QDs) using a facile successive ionic layer adsorption and reaction (SILAR) method, exploring their application in quantum dot-sensitized solar cells (QDSSCs). The AgInS<sub>2</sub> QDs were grown on mesoporous TiO<sub>2</sub> via a two-stage SILAR process at room temperature. The optimization of Ag-S SILAR cycles (<i>n</i>) was performed to determine the ideal conditions, while the In-S SILAR cycles were held constant at seven cycles. X-ray diffraction (XRD) pattern analysis revealed an orthorhombic crystalline structure of the synthesized AgInS<sub>2</sub> QDs. Analysis of the optical spectra revealed a reduction in the optical energy bandgap (<i>E</i><sub><i>g,op</i></sub>) of AgInS<sub>2</sub> QDs from 2.00 eV to 1.92 eV and further to 1.78 eV as the value of <i>n</i> increased from 1 to 3. Employing AgInS<sub>2</sub> QDs, a polysulfide electrolyte, and a CuS counter electrode, liquid-junction semiconductor QDSSCs were fabricated. Optimal conditions were achieved at <i>n</i> = 2, resulting in outstanding power conversion efficiency (PCE) of 3.57% (<i>J</i><sub>sc</sub> = 8.56 mA/cm<sup>2</sup>, <i>V</i><sub>oc</sub> = 0.64 V, FF = 65.2%). Under reduced light intensity (0.25 sun), the PCE increased to 5.26%. The external quantum efficiency (EQE) spectrum of the best cells spanned 400−700 nm, maintaining a nearly constant EQE value of ~ 65% within the 400−600 nm range. Remarkably, the PCE achieved surpassed previously reported liquid-junction AgInS<sub>2</sub> QDSSCs. These findings highlight the facile production of heavy-metal-free AgInS<sub>2</sub> QDs through a room-temperature SILAR method and the tunable optical properties of AgInS<sub>2</sub> QDs by controlling Ag-S SILAR cycles, revealing their potential as an efficient solar absorber.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":"131 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11664-024-11365-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the synthesis of heavy-metal-free AgInS2 quantum dots (QDs) using a facile successive ionic layer adsorption and reaction (SILAR) method, exploring their application in quantum dot-sensitized solar cells (QDSSCs). The AgInS2 QDs were grown on mesoporous TiO2 via a two-stage SILAR process at room temperature. The optimization of Ag-S SILAR cycles (n) was performed to determine the ideal conditions, while the In-S SILAR cycles were held constant at seven cycles. X-ray diffraction (XRD) pattern analysis revealed an orthorhombic crystalline structure of the synthesized AgInS2 QDs. Analysis of the optical spectra revealed a reduction in the optical energy bandgap (Eg,op) of AgInS2 QDs from 2.00 eV to 1.92 eV and further to 1.78 eV as the value of n increased from 1 to 3. Employing AgInS2 QDs, a polysulfide electrolyte, and a CuS counter electrode, liquid-junction semiconductor QDSSCs were fabricated. Optimal conditions were achieved at n = 2, resulting in outstanding power conversion efficiency (PCE) of 3.57% (Jsc = 8.56 mA/cm2, Voc = 0.64 V, FF = 65.2%). Under reduced light intensity (0.25 sun), the PCE increased to 5.26%. The external quantum efficiency (EQE) spectrum of the best cells spanned 400−700 nm, maintaining a nearly constant EQE value of ~ 65% within the 400−600 nm range. Remarkably, the PCE achieved surpassed previously reported liquid-junction AgInS2 QDSSCs. These findings highlight the facile production of heavy-metal-free AgInS2 QDs through a room-temperature SILAR method and the tunable optical properties of AgInS2 QDs by controlling Ag-S SILAR cycles, revealing their potential as an efficient solar absorber.

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用简便的 SILAR 方法提高无重金属 AgInS2 量子点敏化太阳能电池的光伏性能
本研究采用简便的连续离子层吸附和反应(SILAR)方法合成了不含重金属的 AgInS2 量子点(QDs),并探索了它们在量子点敏化太阳能电池(QDSSCs)中的应用。AgInS2 QDs 是在室温下通过两阶段 SILAR 工艺生长在介孔二氧化钛上的。对 Ag-S SILAR 周期(n)进行了优化,以确定理想的条件,而 In-S SILAR 周期则保持在七个周期不变。X 射线衍射 (XRD) 图谱分析表明,合成的 AgInS2 QDs 具有正交晶状结构。光学光谱分析显示,随着 n 值从 1 增加到 3,AgInS2 QDs 的光学能带隙(Eg,op)从 2.00 eV 减小到 1.92 eV,并进一步减小到 1.78 eV。 利用 AgInS2 QDs、多硫化物电解质和 CuS 对电极,制备出了液结半导体 QDSSC。在 n = 2 时达到最佳条件,实现了 3.57% 的出色功率转换效率 (PCE)(Jsc = 8.56 mA/cm2,Voc = 0.64 V,FF = 65.2%)。在光照强度降低(0.25 个太阳)的情况下,PCE 上升到 5.26%。最佳电池的外部量子效率(EQE)光谱横跨 400-700 纳米,在 400-600 纳米范围内,EQE 值几乎保持在 65% 左右。值得注意的是,所达到的 PCE 超过了之前报道的液态结 AgInS2 QDSSC。这些发现突显了通过室温 SILAR 方法轻松制备出不含重金属的 AgInS2 QDs,以及通过控制 Ag-S SILAR 周期实现 AgInS2 QDs 的可调光学特性,揭示了其作为高效太阳能吸收剂的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Electronic Materials
Journal of Electronic Materials 工程技术-材料科学:综合
CiteScore
4.10
自引率
4.80%
发文量
693
审稿时长
3.8 months
期刊介绍: The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications. Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field. A journal of The Minerals, Metals & Materials Society.
期刊最新文献
Factors Influencing Standard PID Test and Anti-PID Performance of Ga-Doped PERC Mono-Facial Photovoltaic Modules Enhanced Microwave Magnetic and Dielectric Properties of YBiIG Ferrite by Ca-Zr Co-substitution Structural, Optical, and Magnetic Studies of Nickel-Doped β-Ga2O3 Monoclinic and Spinel Polycrystalline Powders Effect of Epoxy Material Viscosity and Gold Wire Configuration on Light-Emitting Diode Encapsulation Process Synthesis and Characterization of Sn-Doped CuO Thin Films for Gas Sensor Toward H2S Gas Sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1