{"title":"Micro-cold Spray Deposition of YSZ Films from Ultrafine Powders Using a Pressure Relief Channel Nozzle","authors":"Stephen G. Bierschenk, Desiderio Kovar","doi":"10.1007/s11666-024-01813-4","DOIUrl":null,"url":null,"abstract":"<div><p>The use of ultrafine powders in the micro-cold spray (MCS) process, also referred to as the aerosol deposition method, typically results in porous and/or poorly adhering films because the particles do not impact at a high enough velocity for sufficient plastic deformation and interparticle bonding to occur. Under typical operating conditions, particles < 100 nm accelerate to high velocities but then are slowed by the stagnant gas in the bow shock that forms just upstream of the substrate. Using larger particles reduces particle slowing, but large particles can cause erosion of the film at high impact velocity, decreasing deposition efficiency. In this study, a pressure relief channel nozzle using helium as a carrier gas is proposed such that high-velocity deposition of yttria-stabilized zirconia particles as small as 10 nm in diameter is possible. This is well below the size range of powders previously used for MCS. The proposed nozzle design increases impact velocities for 10, 20, and 50 nm particles by ~ 880, 560, and 160 m/s, respectively, when compared to a conventional nozzle. Experimental deposition of ultrafine 8YSZ powder shows that the pressure relief channel nozzle results in lower porosity and more uniform deposits, with a ∼ 186% increase in deposition efficiency.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"33 6","pages":"2022 - 2033"},"PeriodicalIF":3.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11666-024-01813-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Spray Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11666-024-01813-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
The use of ultrafine powders in the micro-cold spray (MCS) process, also referred to as the aerosol deposition method, typically results in porous and/or poorly adhering films because the particles do not impact at a high enough velocity for sufficient plastic deformation and interparticle bonding to occur. Under typical operating conditions, particles < 100 nm accelerate to high velocities but then are slowed by the stagnant gas in the bow shock that forms just upstream of the substrate. Using larger particles reduces particle slowing, but large particles can cause erosion of the film at high impact velocity, decreasing deposition efficiency. In this study, a pressure relief channel nozzle using helium as a carrier gas is proposed such that high-velocity deposition of yttria-stabilized zirconia particles as small as 10 nm in diameter is possible. This is well below the size range of powders previously used for MCS. The proposed nozzle design increases impact velocities for 10, 20, and 50 nm particles by ~ 880, 560, and 160 m/s, respectively, when compared to a conventional nozzle. Experimental deposition of ultrafine 8YSZ powder shows that the pressure relief channel nozzle results in lower porosity and more uniform deposits, with a ∼ 186% increase in deposition efficiency.
期刊介绍:
From the scientific to the practical, stay on top of advances in this fast-growing coating technology with ASM International''s Journal of Thermal Spray Technology. Critically reviewed scientific papers and engineering articles combine the best of new research with the latest applications and problem solving.
A service of the ASM Thermal Spray Society (TSS), the Journal of Thermal Spray Technology covers all fundamental and practical aspects of thermal spray science, including processes, feedstock manufacture, and testing and characterization.
The journal contains worldwide coverage of the latest research, products, equipment and process developments, and includes technical note case studies from real-time applications and in-depth topical reviews.