Efficient epoxidation of olefins by immobilized (TEMPO)-co-(Chlorophyll b)/Co(III) polymer on magnetic NPs as a bi-functional, self-co-oxidant magnetically recyclable nanocatalyst: smart isolation with poly(benzoic acid)
{"title":"Efficient epoxidation of olefins by immobilized (TEMPO)-co-(Chlorophyll b)/Co(III) polymer on magnetic NPs as a bi-functional, self-co-oxidant magnetically recyclable nanocatalyst: smart isolation with poly(benzoic acid)","authors":"Milad Kazemnejadi, Mohsen Esmaeilpour","doi":"10.1007/s11164-024-05394-3","DOIUrl":null,"url":null,"abstract":"<div><p>A selective and efficient olefin epoxidation has been developed by Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>/(TEMPO)-copolymer-(Chlorophyll <i>b</i>)-Co<sup>(III)</sup> NPs as a heterogeneous magnetically recyclable nanocatalyst. The nanocatalyst was synthesized through several steps including chlorophyll <i>b</i> de-metallation, imine functionalization with ally amine, co-polymerization with acrylated TEMPO, re-metalation with cobalt, and immobilization on magnetite NPs. Selective catalytic epoxidation of olefins was accomplished under mild conditions and in an O<sub>2</sub> atmosphere. High selectivity and conversion were achieved for a variety of substrates. The results indicated a synergistic effect between TEMPO moieties and the coordinated Co<sup>(III)</sup> centers as two active sites. The epoxide products could be separated by the heterogeneous poly(benzoic acid) with the highest possible isolated yields. Also, the heterogeneous nanocatalyst could be recycled for at least 7 consecutive cycles with a negligible reactivity loss.</p><h3>Graphical abstract</h3><p>A selective and efficient olefin epoxidation with smart isolation has been developed by Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>/(TEMPO)-copolymer-(Chlorophyll <i>b</i>)-Co<sup>(III)</sup> NPs under mild conditions.</p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":753,"journal":{"name":"Research on Chemical Intermediates","volume":"50 10","pages":"4775 - 4794"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research on Chemical Intermediates","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11164-024-05394-3","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A selective and efficient olefin epoxidation has been developed by Fe3O4@SiO2/(TEMPO)-copolymer-(Chlorophyll b)-Co(III) NPs as a heterogeneous magnetically recyclable nanocatalyst. The nanocatalyst was synthesized through several steps including chlorophyll b de-metallation, imine functionalization with ally amine, co-polymerization with acrylated TEMPO, re-metalation with cobalt, and immobilization on magnetite NPs. Selective catalytic epoxidation of olefins was accomplished under mild conditions and in an O2 atmosphere. High selectivity and conversion were achieved for a variety of substrates. The results indicated a synergistic effect between TEMPO moieties and the coordinated Co(III) centers as two active sites. The epoxide products could be separated by the heterogeneous poly(benzoic acid) with the highest possible isolated yields. Also, the heterogeneous nanocatalyst could be recycled for at least 7 consecutive cycles with a negligible reactivity loss.
Graphical abstract
A selective and efficient olefin epoxidation with smart isolation has been developed by Fe3O4@SiO2/(TEMPO)-copolymer-(Chlorophyll b)-Co(III) NPs under mild conditions.
期刊介绍:
Research on Chemical Intermediates publishes current research articles and concise dynamic reviews on the properties, structures and reactivities of intermediate species in all the various domains of chemistry.
The journal also contains articles in related disciplines such as spectroscopy, molecular biology and biochemistry, atmospheric and environmental sciences, catalysis, photochemistry and photophysics. In addition, special issues dedicated to specific topics in the field are regularly published.